BorisovAI
Все публикации
Общееtrend-analisisClaude Code

Как научить AI различать реальную архитектуру от Photoshop'а

Как научить AI различать реальную архитектуру от Photoshop'а

Как мы учили AI видеть архитектуру без фотошопа

Вот такая задача свалилась на нас в проект trend-analisis: нужно было понять, как архитекторы демонстрируют свои проекты и выяснить — что в их показах реальное, а что просто красивая визуализация. Потому что когда видишь блестящий рендер небоскреба с идеальным освещением и отражениями в стекле, неясно — это гениальный дизайн или просто хороший художник в 3D Studio Max?

Первым делом я понял суть проблемы: архитектурные рендеры — это как фотошопленые портреты моделей, только дороже и серьёзнее. Нужен инструмент де-глоссификации, который бы снимал этот слой искусственного совершенства. Назвали мы его Antirender.

Идея была простая, но реализация — жёсткая. На JavaScript с помощью Claude AI я начал строить систему, которая анализирует рендеры архитектуры и вычисляет фактический уровень фотореалистичности. Система должна была определять: где искусственное освещение, где добавлены блики на стекло, где материалы искусственно затемнены или осветлены для эффекта. По сути — выявлять слои постобработки в CGI.

Рядом с этой задачей встала ещё одна техническая проблема. Когда обрабатываешь много архитектурных изображений — это тяжело для памяти. Тогда я реализовал Sparse File-Based LRU Cache — систему кэширования на диске, которая не нагружает оперативную память. Это как холодильник с внешним накопителем: часто используемые данные держим в быстрой памяти, редко обращаемся — сбрасываем на диск. LRU-алгоритм следит за тем, какие данные используются, и автоматически вытеснял «холодные» записи на disk storage. Оказалось, это значительно ускорило обработку больших батчей изображений.

Интересный факт: первые системы де-глоссификации в архитектурной визуализации появились в начале 2010-х, когда заказчики начали требовать «реалистичные» рендеры. Но тогда это были ручные процессы — художники вручную удаляли блики. Мы же решили автоматизировать это через нейросетевой анализ.

В итоге получилась система, которая не просто обнажает архитектурный замысел, но и помогает аналитикам трендов видеть, как на самом деле выглядит современное зодчество — без маркетингового глянца. Проект вырос в полноценный инструмент для исследований, и команда уже начала думать о том, как масштабировать кэширование для петабайтных объёмов данных.

Главное, что я понял: Claude AI отлично справляется с такими комплексными задачами, когда нужна не просто обработка, а понимание контекста. Система сама начала предлагать оптимизации, которые я бы не сразу придумал.

😄 Почему архитекторы не любят De-glossification Tool? Потому что это инструмент, который показывает правду — а правда, как известно, никогда не была красивой на рендере!

Метаданные

Session ID:
grouped_trend-analisis_20260211_1435
Branch:
main
Dev Joke
Почему PHP считает себя лучше всех? Потому что Stack Overflow так сказал

Оцените материал

0/1000