Как научить AI различать реальную архитектуру от Photoshop'а

Как мы учили AI видеть архитектуру без фотошопа
Вот такая задача свалилась на нас в проект trend-analisis: нужно было понять, как архитекторы демонстрируют свои проекты и выяснить — что в их показах реальное, а что просто красивая визуализация. Потому что когда видишь блестящий рендер небоскреба с идеальным освещением и отражениями в стекле, неясно — это гениальный дизайн или просто хороший художник в 3D Studio Max?
Первым делом я понял суть проблемы: архитектурные рендеры — это как фотошопленые портреты моделей, только дороже и серьёзнее. Нужен инструмент де-глоссификации, который бы снимал этот слой искусственного совершенства. Назвали мы его Antirender.
Идея была простая, но реализация — жёсткая. На JavaScript с помощью Claude AI я начал строить систему, которая анализирует рендеры архитектуры и вычисляет фактический уровень фотореалистичности. Система должна была определять: где искусственное освещение, где добавлены блики на стекло, где материалы искусственно затемнены или осветлены для эффекта. По сути — выявлять слои постобработки в CGI.
Рядом с этой задачей встала ещё одна техническая проблема. Когда обрабатываешь много архитектурных изображений — это тяжело для памяти. Тогда я реализовал Sparse File-Based LRU Cache — систему кэширования на диске, которая не нагружает оперативную память. Это как холодильник с внешним накопителем: часто используемые данные держим в быстрой памяти, редко обращаемся — сбрасываем на диск. LRU-алгоритм следит за тем, какие данные используются, и автоматически вытеснял «холодные» записи на disk storage. Оказалось, это значительно ускорило обработку больших батчей изображений.
Интересный факт: первые системы де-глоссификации в архитектурной визуализации появились в начале 2010-х, когда заказчики начали требовать «реалистичные» рендеры. Но тогда это были ручные процессы — художники вручную удаляли блики. Мы же решили автоматизировать это через нейросетевой анализ.
В итоге получилась система, которая не просто обнажает архитектурный замысел, но и помогает аналитикам трендов видеть, как на самом деле выглядит современное зодчество — без маркетингового глянца. Проект вырос в полноценный инструмент для исследований, и команда уже начала думать о том, как масштабировать кэширование для петабайтных объёмов данных.
Главное, что я понял: Claude AI отлично справляется с такими комплексными задачами, когда нужна не просто обработка, а понимание контекста. Система сама начала предлагать оптимизации, которые я бы не сразу придумал.
😄 Почему архитекторы не любят De-glossification Tool? Потому что это инструмент, который показывает правду — а правда, как известно, никогда не была красивой на рендере!
Метаданные
- Session ID:
- grouped_trend-analisis_20260211_1435
- Branch:
- main
- Dev Joke
- Почему PHP считает себя лучше всех? Потому что Stack Overflow так сказал