BorisovAI
Все публикации
Новая функцияtrend-analisisGit коммит

Восемь API за день: как я собрал тренд-систему в production

Восемь API за день: как я собрал тренд-систему в production

Восемь источников данных, один день работы и вот уже система тянет информацию со всего интернета

Проект trend-analisis набирал обороты, но его слабое место было очевидным: система собирала сигналы о трендах, но питалась только крохами. Для полноценного анализа нужны были новые источники — не просто много, а разнообразные. Нужно было подтянуть социальные сети, новостные порталы, профильные техсообщества, поисковые тренды. За один день. В production-quality коде. Без паники.

Зачем нам восемь источников сразу?

Задача была типичной для аналитического сервиса: один источник данных — это шум, два-три — начало картины, а восемь разнородных источников — это уже сигнал. Reddit подскажет, что волнует сообщество. NewsAPI покажет, о чём пишут журналисты. Stack Overflow раскроет технические интересы. Google Trends — чистая позиция того, что гуглят люди. Каждый источник — отдельный голос, и все вместе они рисуют трендовый пейзаж.

Но подключить восемь API разом — это не просто скопировать curl. Это интеграционный конвейер: конфиги с rate limits, асинхронные адаптеры с обработкой ошибок, health checks, нормализация сигналов и композитный скоринг.

Как я это делал

Первым делом определился со структурой: для каждого источника создал отдельную конфиг-модель с правильными таймаутами и лимитами запросов. Reddit ждёт полусекунды между запросами, YouTube требует аутентификации, NewsAPI предоставляет 100 запросов в день — каждый со своими правилами. Async-адаптеры писал через единый интерфейс, чтобы остальная система не парилась, откуда приходят данные.

Интересный момент возник с нормализацией сигналов. Из Reddit берём апвоты и engagement ratio, из YouTube — view count и likes, из Product Hunt — голоса, из PubMed — цитирования. Как их между собой сравнивать? Социальная сеть может выдать миллион просмотров за день, а академический источник — тысячу цитаций за год. Решение было в BASELINES: каждая категория (SOCIAL, NEWS, TECH, SEARCH, ACADEMIC) имела базовые метрики, а затем веса равномерно распределялись внутри категории (сумма = 1.0). Глупо? Нет, это working solution, который можно итеративно улучшать с реальными данными.

В scoring.py пришлось добавить обработку 18+ новых сигналов из метаданных: от количества комментариев до индекса популярности. Тесты написал параллельно с кодом — 22 unit теста плюс E2E проверка здоровья источников.

Свежий факт о REST API, который не знали в 2010-м

Когда создавали REST, никто не предусмотрел, что один API будет вызываться столько раз в секунду. Rate limiting появился потом, как забота сервиса о себе. Поэтому крупные API вроде Twitter и YouTube теперь добавляют в заголовки ответа оставшееся количество запросов (X-RateLimit-Remaining). Это не просто информация — это обратная связь для асинхронных очередей, которые должны умнее разподвигивать нагрузку.

Что получилось

13 адаптеров зарегистрировалось успешно, health checks прошли 10 из 13 (три гейтированы на аутентификацию, но это ожидаемо). Reddit, NewsAPI, Stack Overflow, YouTube, Dev.to, Product Hunt, Google Trends и PubMed — теперь все они поют в хоре trend-analisis. Система может агрегировать упоминания, подсчитывать тренды, видеть, что вот прямо сейчас взлетает в техсообществе.

Дальше предстоит: фидтуню веса, добавить источники второго уровня, может быть, Hacker News и Mastodon. Но фундамент готов.


GitHub Actions: решение проблемы, о существовании которой ты не знал, способом, который не понимаешь. 😄

Метаданные

Branch:
main
Dev Joke
GitHub Actions: решение проблемы, о существовании которой ты не знал, способом, который не понимаешь.

Часть потока:

Разработка: trend-analisis

Оцените материал

0/1000