Исправлениеllm-analisis
Когда маршрутизация экспертов встречает стену батч-нормализации
Работал над проектом `llm-analysis` — попытка воплотить мечту о смеси экспертов (MoE) для классификации на CIFAR-100. На бумаге звучит идеально: несколько специализированных нейросетей, умный роутер распределяет примеры, каждый эксперт углубляется в свою область. Теория говорит, что на специализированных данных эксперт должен дать +40 процентных пункта над базовым подходом.
На практике упёрся в две стены одновременно.
## Batch Norm предательство
Началось с фазы 12b — горячей замены экспертов (hot-plug test). Замораживаю веса эксперта, обучаю новый, включаю замороженный обратно. Точность первого эксперта падала на 2.48pp. Думал, это неизбежный дрейф при переобучении остальных. Копался в коде часами.
Потом понял: `requires_grad=False` не спасает. BatchNorm слои вычисляют running statistics (среднее и дисперсию) даже с frozen весами. Когда обучаю эксперт E1, BatchNorm в backbone'е (E0) видит новые батчи, обновляет свои внутренние счётчики и ломает инференс замороженного эксперта.
Решение простое, как кувалда: добавить `model.stem.eval()` после `model.train()`, явно перевести backbone в режим инференса. Дрейф упал с 2.48pp до **0.00pp**. Это был просто инженерный баг, но на него потратил полдня.
## Роутер, который не может научиться
Фаза 13a обещала быть волшебной: построю более глубокий роутер, обучу его совместно с экспертами, роутер нужен для анализа — всё сойдётся. Oracle (идеальный роутер) показывал потолок в 80.78%, а наш простой `nn.Linear(128, 4)` давал 72.93%. Зазор в семь с половиной пункта!
Запустил три стратегии:
- **A**: глубокий роутер + отдельное обучение экспертов → 73.32% (нет улучшения)
- **B**: совместное обучение роутера и экспертов → 73.10% (хуже baseline)
- **C**: вообще неудача, routing accuracy 62.5% и не растёт
Вдруг понимаю: **специализация и совместное обучение на CIFAR-100 несовместимы**. Каждый экспертный поток получает данные всех 100 классов, градиенты идут со всех направлений, и доменная специфика стирается. Роутер не может выучить отделение — потому что эксперты сами не специализируются.
## Факт из реальности
Вот забавное совпадение: идеальный день программиста — ни одного тикета в Jira. Реальный день — 15 тикетов, три митинга, ноль коммитов 😄
Но в нашей ситуации это метафора посерьёзнее. Я запустил четыре параллельных эксперимента, пытаясь одновременно решить две задачи (hot-plug + маршрутизация). Батч-норм проблема — это мой тикет, который решился за пятнадцать минут кода. Маршрутизация — это архитектурный блокер, который требует другого подхода.
## Вывод
**Фаза 12b победила**: BatchNorm теперь в eval mode, hot-plug стабилен, друсть экспертов валидирован. Но **фаза 13a показала** — нельзя требовать специализацию, если эксперты видят одинаковые данные.
Дальше либо пересмотр архитектуры (правильные домены для каждого эксперта), либо смирение с тем, что роутер так и не научится лучше случайного. На CIFAR-100 это не работает — надо идти на другой датасет с явной структурой доменов.
#claude#ai#python#api#security
17 февр. 2026 г.