Блог
Публикации о процессе разработки, решённых задачах и изученных технологиях
Почему картинки в заметках исчезали — и как я это чинил
В проекте **bot-social-publisher** большинство заметок генерировались без картинок. Я открыл pipeline обогащения контента и понял: изображения генерируются, но где-то теряются при публикации на сайт. Сначала подумал, что проблема в самом генераторе картинок — может быть, Unsplash API разобрался со скоростью запросов или что-то сломалось в fallback на Pillow. Но логи показали: функция `generate_image()` работает стабильно, возвращает валидные URL или локальные пути. Дальше проследил цепочку обогащения: **ContentSelector** срезает контент до 40–60 информативных строк, Claude CLI генерирует текст на русском и английском, валидация языков переворачивает контент если перепутались локали. Все работает. Изображение есть в `EnrichedNote`. Чек перед публикацией через Strapi API показал, что в JSON отправляется корректно, но в ответе сервера поле `imageUrl` появлялось пустым. Оказалось, что при PUT-запросе на обновление заметки нужно передавать не просто URL, а правильно структурированную ссылку с указанием локали — `?locale=ru` для русского варианта. Вторая причина была более коварной: когда контент на английском оказывался длиннее русского, система неправильно маппила картинку. Я перепроверил логику выбора языка — оказалось, что валидация через `detect_language()` иногда ошибалась при смешанном контексте (когда в заметке много технических терминов на латинице). **Решение оказалось двухуровневым:** 1. Явно привязать изображение к основному языку заметки (русский, как определено в конфиге), не к случайному выбору в цикле обогащения. 2. Добавить проверку в `scripts/update_site.py` — если картинка есть, отправлять её в отдельном поле `media` с правильным MIME-type, а не мешать с текстом. После этих изменений заметки начали публиковаться с картинками стабильно. Кстати, интересный момент: **Swift и кот делают только то, что хотят и игнорируют инструкции** 😄 — примерно так себя вел и этот баг, пока я не прочитал логи в деталях. Обновил также документацию enrichment-пайплайна, чтобы следующий разработчик не искал картинки в пяти файлах сразу.
Когда батч-норм ломает миксчур экспертов на CIFAR-100
Три недели охоты за призраком. Работал над проектом `llm-analysis` с амбициозной идеей: **mixture-of-experts** для классификации на CIFAR-100. Теория обещала +40 процентных пункта над baseline. На практике упёрся в две стены сразу. ## Первая стена: BatchNorm молчаливый убийца Всё началось на фазе 12b с горячей замены экспертов (hot-plug test). Замораживаю веса одного эксперта, обучаю новый, включаю замороженный назад. И вот беда — точность первого эксперта падает на **2.48 процентных пункта**. Часы в отладчике, проверка логик, перепроверка кода... Потом осенило: `requires_grad=False` не спасает. **BatchNorm слои обновляют running statistics** даже с заморозкой весов. Это внутренние счётчики среднего и дисперсии — они ломают инференс замороженного эксперта, когда я обучаю рядом лежащего. Решение глупо-простое: добавил `model.stem.eval()` после `model.train()`. Явно перевести backbone в режим инференса. Дрейф упал с 2.48pp до нуля. Полдня на баг, который решился одной строкой. Классика. ## Вторая стена: роутер, который не хочет учиться Фаза 13a должна была быть волшебной. Oracle (идеальный роутер) показывал потолок в **80.78%**. А мой `nn.Linear(128, 4)` застрял на **72.93%** — зазор в семь с половиной пункта. Запустил три стратегии подряд: 1. **Глубокий роутер + отдельное обучение**: 73.32% — тоже не помогает 2. **Совместное обучение роутера и экспертов**: 73.74% — хуже 3. **Ещё глубже архитектура**: routing accuracy 62.5% и не растёт Вот в чём подвох: на CIFAR-100 эксперты видят **одинаковые 100 классов** из каждого батча. Градиенты идут со всех направлений одновременно. Доменная специфика просто стирается. Роутер не может выучить разделение — потому что эксперты сами никогда не специализируются. Это не инженерный баг. Это архитектурный потолок. ## Странное совпадение про зависимости Кстати, а знаешь, почему ZeroMQ расстался с разработчиком? **Слишком много зависимостей в отношениях** 😄 Но серьёзно — я запустил четыре параллельных эксперимента, пытаясь одновременно решить две несвязанные задачи. BatchNorm — это был мой быстрый win. Маршрутизация — архитектурный блокер. **Итог фазы 12b**: горячая замена экспертов работает. Hot-plug стабилен. Batch-norm под контролем. **Итог фазы 13a**: нельзя требовать специализацию, если эксперты видят одинаковые данные. На CIFAR-100 с такой архитектурой это невозможно. Нужна либо переделка доменов под каждого эксперта, либо... признание поражения и переход на другой датасет. Иногда две стены одновременно — это знак, что дверь в другом месте.