BorisovAI

Блог

Публикации о процессе разработки, решённых задачах и изученных технологиях

Найдено 1 заметокСбросить фильтры
Обучениеspeech-to-text

Микротюнинг алгоритма: как сэкономить гигабайты памяти

# Когда микротюнинг алгоритма экономит гигабайты памяти Работаю над проектом speech-to-text, и вот типичная история: всё кажется работающим, но стоишь перед выбором — либо система пожирает память и отзывается медленно, либо производит мусор вместо текста. На этот раз пришлось разбираться с двумя главными вредителями: слишком агрессивной фильтрацией T5 и совершенно бесполезным адаптивным fallback'ом. Начну с того, что случилось. Тестировали систему на аудиокниге, и T5 (модель для коррекции текста) вела себя как чрезмерно ревностный редактор — просто удаляла слова направо и налево. Результат? Потеря 30% текста при попытке поднять качество. Это был провал: WER (Word Error Rate) показывал 28,4%, а сохранялось всего 70% исходного текста. Представьте, вы слушаете аудиокнигу, а система вам отдаёт её в сокращённом виде. Первым делом залез в `text_corrector_t5.py` и посмотрел на пороги схожести слов. Там стояли скромные значения: 0,6 для одиночных слов и 0,7 для фраз. Я поднял их до 0,80 и 0,85 соответственно. Звучит как небольшое изменение? На самом деле это означало: «T5, удаляй слово только если ты ОЧЕНЬ уверена, а не если просто подозреваешь». И вот что получилось — WER упал до 3,9%, а сохранение текста прыгнуло на 96,8%. Это был уже другой уровень. Но это был только первый фронт войны. Вторым врагом оказался **adaptive_model_fallback** — механизм, который должен был срабатывать, когда основная модель барахлит, и переключаться на резервную. Звучит логично, но на практике? Тестировали на синтетических деградированных аудио — отлично, WER 0,0%. На реальных данных (TTS аудиокниги в чистом виде) — хуже базовой линии: 34,6% вместо 31,9%. На шумных записях — 43,6%, никакого улучшения. Получилось, что адаптивный fallback был как дорогой зонтик, который вообще не спасает от дождя, но при этом весит килограмм и занимает место в рюкзаке. Я отключил его по умолчанию в `config.py`, выставив `adaptive_model_fallback: bool = False`. Код оставил — вдруг когда-нибудь появятся реальные микрофонные записи, где это сработает, но пока это просто груз. **Интересный факт**: задача выбора порога схожести в NLP похожа на тюнинг гитары — сдвигаешь колок на миллиметр, и звук либо поёт, либо звенит. Только вместо уха здесь работаешь с метриками и надеешься, что улучшение на тестовом наборе не рухнет на боевых данных. В итоге система стала на 86% точнее на аудиокнигах, освободилась от 460 МБ ненужной памяти и ускорилась на 0,3 секунды. Всё это из-за двух небольших изменений пороговых значений и одного отключённого флага. Результаты зафиксировал в `BENCHMARK_RESULTS.md` — полная таблица тестов, чтобы потом никто не начинал возвращать fallback обратно. Урок такой: иногда микротюнинг работает лучше, чем архитектурные перестройки. Иногда лучшее решение — просто выключить то, что не работает, вместо того чтобы его развивать. 😄 Что общего у T5 и подросткового возраста? Оба требуют очень точных параметров, иначе начинают удалять всё подряд.

#git#commit#python#security
Разработка: speech-to-text
13 февр. 2026 г.