BorisovAI

Блог

Публикации о процессе разработки, решённых задачах и изученных технологиях

Новая функцияtrend-analisis

Когда АИ потребляет больше энергии, чем город

# Когда AI требует больше электричества, чем город: история системы анализа трендов энергетического кризиса Проект `trend-analisis` начался с простого вопроса: **как отследить цепочку экономических эффектов, когда спрос на GPU-мощности взлетает в стратосферу?** Я работал над веткой `feat/scoring-v2-tavily-citations`, и задача была в том, чтобы построить систему, которая бы не просто собирала новости о ИИ-индустрии, но и прослеживала глубокие причинно-следственные связи — от роста энергопотребления до переустройства мировой экономики. ## Завязка: энергия как узкое место Когда я начинал, казалось странным, что обычно люди говорят про недостаток GPU, но никто не говорит про настоящую проблему — **электричество**. Обучение современной LLM требует мегаватт-часов энергии. Калифорния и Техас уже перегружены. Это означает, что дата-центры начнут мигрировать в Скандинавию, Францию — туда, где есть гидро и атомная энергия. А это, в свою очередь, заставит стартапы искать альтернативы, ускорит инновации в энергоэффективных архитектурах, переформирует конкурентный ландшафт. ## Развитие: от сырых данных к картине мира Первое, что я сделал — структурировал данные в виде зон влияния с явными цепочками причинности. Использовал Claude API для анализа паттернов, интегрировал Tavily для сбора свежих цитат и источников. Каждый эффект теперь имел **направление** (положительное/отрицательное), **силу** (1-10), **временной горизонт** (краткосрочный/среднесрочный/долгосрочный) и самое важное — **цепочку причин и следствий**. Неожиданно выяснилось, что эти цепочки взаимосвязаны. Когда AI-компании становятся крупнейшими потребителями энергии, они начинают инвестировать в солнечные фермы и SMR-реакторы. Это дешевеет возобновляемую энергию для всех. Одновременно растет давление регуляторов — начинаются требования раскрывать углеродный след, появляются специализированные углеродные кредиты. А для малых стартапов это становится смертельным ударом: если у тебя нет доступа к собственной энергоинфраструктуре, как у OpenAI или xAI, ты не сможешь обучать фундаментальные модели. Останется только inference, только приложения поверх чужих API. ## Интересный факт о том, как энергия переворачивает архитектуру Вы знаете, что по цене на электричество часто определяется, где именно появляются инновации в микроэлектронике? TSMC потому доминирует на Тайване, что там дешевая энергия из-за гидроэлектростанций. Когда энергия становится дороже чипа, архитектура следует за энергией. Специализированные облачные провайдеры типа CoreWeave растут не потому, что они технически лучше, а потому, что у них есть контракты на дешевую энергию. Это меняет всю экосистему быстрее, чем любые breakthrough в neural networks. ## Итог Система заработала. Теперь мы видим не просто новости, но **экосистему зависимостей**: как дефицит энергии ускоряет инновации в дистилляции моделей, как это позволяет small language models работать на потребительских устройствах, как одновременно фрагментируется AI-экосистема из-за экспортных ограничений NVIDIA и разработки собственных чипов в Китае и Европе. Дальше я планирую добавить динамическое обновление этих цепочек по новым данным и визуализацию сетей зависимостей. Потому что только когда видишь систему целиком, понимаешь, почему случается то, что происходит. Шутка в завершение: когда я начал анализировать цепочки причин для энергетических трендов, я понял, почему гидроэлектростанции получают столько инвестиций — потому что AI потребляет больше электричества, чем они могут произвести 😄

#claude#ai#javascript#api
Разработка: trend-analisis
7 февр. 2026 г.
Новая функцияtrend-analisis

GPU-ориентированный империализм: как заказы переписывают карту индустрии

# Каскадные эффекты: как заказ xAI раскачивает весь рынок полупроводников Проект **trend-analysis** начинался с простой идеи: разобраться, как решения одного крупного игрока (допустим, xAI с его огромными заказами GPU) создают волны эффектов по всей экосистеме. Но чем глубже я копал, тем больше понимал, что это не просто цепочка причин и следствий — это целая система взаимосвязанных потрясений. Задача была амбициозная: построить модель, которая не просто идентифицирует эффекты, а классифицирует их по силе воздействия, временным горизонтам и категориям (технология, экономика, общество). Первым делом я начал структурировать данные в формате каузальных цепочек — от конкретного события к долгосрочным последствиям. Вот что выяснилось при анализе. Когда xAI размещает мегазаказ на NVIDIA H100/B200, это не просто увеличение продаж. Это запускает цепь реакций. **Во-первых**, дефицит на рынке GPU сразу замораживает доступ к чипам для стартапов — барьер входа в AI-разработку взлетает на недосягаемую высоту. Только крупные игроки с глубокими карманами могут себе позволить. **Во-вторых**, такой спрос ударяет по цепочке поставок полупроводникового оборудования: ASML и Applied Materials начинают работать на максимум, что требует массового найма инженеров-литографов и материаловедов. Зарплаты в отрасли прыгают вверх, таланты потекают из академии. Но самое интересное — геополитический слой. Концентрация производства передовых чипов в руках ASML (Нидерланды) и американских компаний делает технологию оружием геополитики. Экспортные контроли затягиваются, санкции ужесточаются, и страны в панике инвестируют в собственные fab-заводы (вспомни CHIPS Act в США или European Chips Act). Результат: локализация производства, но и фрагментация технологических стандартов. Энергетический аспект тоже мрачный. GPU-кластеры для обучения современных LLM требуют мегаватты электричества. Локальные сети ломаются, приходится строить новые энергомощности — и углеродный след AI-индустрии становится всё менее привлекательным. Неожиданно выяснилось, что это создаёт спрос на альтернативные архитектуры. Neuromorphic computing, оптические процессоры — они начинают выглядеть не как любительские проекты, а как стратегическая необходимость. И вот уже инвестиции текут в новые направления. Работа над **feat/scoring-v2-tavily-citations** подтвердила: нельзя анализировать тренды в изоляции. Каждый каскадный эффект нужно оценивать по трём измерениям — силе воздействия (от 1 до 10), временному горизонту (краткосрочный, среднесрочный, долгосрочный) и категории влияния. Только так получается картина, которая помогает предсказать, что будет дальше. 😄 Что общего у MongoDB и подростка? Оба непредсказуемы и требуют постоянного внимания.

#claude#ai#javascript
Разработка: trend-analisis
7 февр. 2026 г.
Новая функцияtrend-analisis

Каскад барьеров: как AI-монополии переформатируют стартапы

# Когда барьеры входа становятся каскадом: анализ AI-ловушек для стартапов Вот уже два месяца я копаюсь в тренд-анализе для проекта **trend-analysis** (веточка feat/scoring-v2-tavily-citations). Задача казалась простой: собрать данные о том, как усложнение AI-архитектур влияет на рынок. Но по мере углубления обнаружил что-то куда интереснее — не просто барьеры входа, а целые каскадные эффекты, которые трансформируют индустрию по цепочке. Начал я с очевидного: кто-то скупает GPU, становится дороже. Но потом понял, что это просто верхушка айсберга. **Первым делом** я структурировал каскады по зонам влияния. Вот что получилось: когда крупные игроки концентрируют рынок, они одновременно скупают лучшие таланты высокими зарплатами — и вот уже уходят в Google все смелые исследователи. Это не просто их потеря для стартапов, это *утечка разнообразия подходов*. Возникает групповое мышление, потому что все думают одинаково. И фундаментальные прорывы замедляются. Параллельно идёт другой процесс: стартапы не могут конкурировать с закрытыми моделями крупных компаний, поэтому open-source альтернативы деградируют. Исследования теряют прозрачность. Научный метод в AI начинает хромать, потому что все зависят от проприетарных API — и никто не знает, что там внутри. **Неожиданно выяснилось**, что это создаёт новый рынок: консалтинг по миграции между платформами. Когда разработчики специализируются на конкретном провайдере LLM (OpenAI, Claude, Mistral), возникает потребность в том, чтобы переучивать людей с одного стека на другой. Целая индустрия вспомогательных инструментов — LiteLLM, Portkey и прочие роутеры — пытается унифицировать API. Но каждый провайдер добавляет свои расширения (function calling, vision), и вот вам уже новый уровень фрагментации. Географически это ещё хуже: без доступа к венчурному капиталу AI-стартапы концентрируются в Кремниевой долине. Регионы отстают. Цифровой разрыв углубляется. И это уже не просто экономическое отставание — это риск технологического неоколониализма, когда целые страны зависят от AI-держав. **Любопытный факт**: компании как xAI буквально скупают GPU на оптовых рынках, создавая искусственный дефицит для облачных провайдеров. Цены на GPU-инстансы в AWS и Azure растут, барьер входа для стартапов повышается — и цикл замыкается. Результат этого анализа — карта вторичных и третичных эффектов, которая показывает, что проблема не в том, что AI дорогой. Проблема в том, что инвестиции в AI концентрируют не только капитал, но и власть, таланты, данные — всё сразу. И это создаёт самоусиливающийся механизм неравенства. Дальше буду анализировать, как open-source и национальные стандарты могут переломить эту тенденцию. 😄 **Что общего у RabbitMQ и подростка?** Оба непредсказуемы и требуют постоянного внимания.

#claude#ai#javascript#api#security
Разработка: trend-analisis
7 февр. 2026 г.
Новая функцияtrend-analisis

Миллиарды в ИИ создают парадокс: спасают экосистему и ломают её одновременно

# Когда миллиарды в ИИ начинают ломать экосистему Проект **trend-analysis** встал перед любопытной задачей: проанализировать каскадные эффекты от войны финансирования в ИИ-индустрии. xAI притягивает миллиарды, конкуренция с OpenAI и Anthropic накаляется, а в это время фрагментация экосистемы разработки начинает создавать абсурдные эффекты на рынке. Я сидел над данными на ветке `feat/scoring-v2-tavily-citations` и понял: это не просто тренд, это каскад парадоксов. **Первым делом** пришлось разобраться в цепочке причин и следствий. Вот как это начинается: огромные инвестиции в фундаментальные модели → фрагментация экосистемы (OpenAI, Anthropic, xAI все делают свои API) → стартапы кричат от боли (ну как же так, поддерживать пять разных интерфейсов?!) → рождается спрос на унифицирующие слои. И вот здесь становится интересно. **LangChain** и **LlamaIndex** (а теперь ещё и **OpenRouter**, **Portkey**, **Helicone**) превращаются в спасителей, но создают новую проблему: теперь компании не просто зависят от провайдера моделей, а добавляют ещё один слой vendor lock-in. Это как нанять посредника для поиска работы — казалось, упростишь жизнь, а потом оказываешься от него зависим. **Неожиданный поворот**: концентрация капитала в foundation models начинает создавать голодомор вниз по стеку. Когда xAI нужны миллиарды на compute, инвестиции в application-layer стартапов высыхают. Меньше финансирования → меньше найма → опытные ML-инженеры концентрируются в трёх-четырёх больших компаниях → через 3–5 лет дефицит middle-level специалистов. Это как выкачивать воду из одного конца колодца. **Интересный парадокс** middleware-платформ: они решают задачу фрагментации, но одновременно *создают* новую фрагментацию. Теперь разработчики специализируются не просто на OpenAI или Claude, а на "OpenAI + LangChain стеке" или "Claude + LlamaIndex". Переключаться между провайдерами дешевле технически, но дороже в плане знаний и опыта. С другой стороны, появляется давление на открытые стандарты. Enterprise-клиенты требуют портируемости. Поэтому де-факто стандартом становятся API, совместимые с OpenAI. Это снизу вверх переписывает правила игры — не консорциум и не хозяйский указ, а рыночное давление. **Итог**: фрагментация парадоксально приводит к консолидации. Те, кто может позволить себе платить за интеграцию (крупные компании и венчурные фонды), выигрывают. Те, кто не может (молодые стартапы), проигрывают. Рынок GPU-инфраструктуры перегревается, инструменты для мониторинга и оптимизации AI становятся критичными, а на горизонте маячит риск: если middleware-платформа упадёт или поменяет pricing, сломается вся архитектура приложений, зависящих от неё. Проект учит: когда деньги льются в основание стека, не забывай про слои выше. Они хрупче, чем кажется. 😄 Если вокруг API от xAI работает абстракция от LangChain — не трогай, боги ИИ благосклонны к вашему проекту.

#claude#ai#javascript#api#security
Разработка: trend-analisis
7 февр. 2026 г.
Новая функцияtrend-analisis

Миллиарды в ИИ создают парадокс: спасают экосистему и ломают её одновременно

# Когда миллиарды в ИИ начинают ломать экосистему Проект **trend-analysis** встал перед любопытной задачей: проанализировать каскадные эффекты от войны финансирования в ИИ-индустрии. xAI притягивает миллиарды, конкуренция с OpenAI и Anthropic накаляется, а в это время фрагментация экосистемы разработки начинает создавать абсурдные эффекты на рынке. Я сидел над данными на ветке `feat/scoring-v2-tavily-citations` и понял: это не просто тренд, это каскад парадоксов. **Первым делом** пришлось разобраться в цепочке причин и следствий. Вот как это начинается: огромные инвестиции в фундаментальные модели → фрагментация экосистемы (OpenAI, Anthropic, xAI все делают свои API) → стартапы кричат от боли (ну как же так, поддерживать пять разных интерфейсов?!) → рождается спрос на унифицирующие слои. И вот здесь становится интересно. **LangChain** и **LlamaIndex** (а теперь ещё и **OpenRouter**, **Portkey**, **Helicone**) превращаются в спасителей, но создают новую проблему: теперь компании не просто зависят от провайдера моделей, а добавляют ещё один слой vendor lock-in. Это как нанять посредника для поиска работы — казалось, упростишь жизнь, а потом оказываешься от него зависим. **Неожиданный поворот**: концентрация капитала в foundation models начинает создавать голодомор вниз по стеку. Когда xAI нужны миллиарды на compute, инвестиции в application-layer стартапов высыхают. Меньше финансирования → меньше найма → опытные ML-инженеры концентрируются в трёх-четырёх больших компаниях → через 3–5 лет дефицит middle-level специалистов. Это как выкачивать воду из одного конца колодца. **Интересный парадокс** middleware-платформ: они решают задачу фрагментации, но одновременно *создают* новую фрагментацию. Теперь разработчики специализируются не просто на OpenAI или Claude, а на "OpenAI + LangChain стеке" или "Claude + LlamaIndex". Переключаться между провайдерами дешевле технически, но дороже в плане знаний и опыта. С другой стороны, появляется давление на открытые стандарты. Enterprise-клиенты требуют портируемости. Поэтому де-факто стандартом становятся API, совместимые с OpenAI. Это снизу вверх переписывает правила игры — не консорциум и не хозяйский указ, а рыночное давление. **Итог**: фрагментация парадоксально приводит к консолидации. Те, кто может позволить себе платить за интеграцию (крупные компании и венчурные фонды), выигрывают. Те, кто не может (молодые стартапы), проигрывают. Рынок GPU-инфраструктуры перегревается, инструменты для мониторинга и оптимизации AI становятся критичными, а на горизонте маячит риск: если middleware-платформа упадёт или поменяет pricing, сломается вся архитектура приложений, зависящих от неё. Проект учит: когда деньги льются в основание стека, не забывай про слои выше. Они хрупче, чем кажется. 😄 Если вокруг API от xAI работает абстракция от LangChain — не трогай, боги ИИ благосклонны к вашему проекту.

#claude#ai#javascript#api#security
7 февр. 2026 г.
Новая функцияtrend-analisis

Когда AI-консультанты становятся единственными, кто понимает вашу архитектуру

# Когда "переводчики AI" становятся профессией: каскад последствий, которые никто не ожидал Проект **trend-analysis** заставил меня посмотреть на явление AI-консультантов совсем с другой стороны. Задача была простой на словах: проанализировать вторичные последствия появления нового класса профессионалов — "AI translators", людей, которые берут готовые большие модели и адаптируют их под конкретные задачи компаний. Но когда начал копаться в причинно-следственных цепочках, понял: это айсберг, и видна только верхушка. **Первым делом** построил граф эффектов в ветке `feat/scoring-v2-tavily-citations`. Система должна была не просто перечислить проблемы, а проследить, *как они порождают друг друга*. Оказалось, что появление AI-translators — это не просто новая профессия, это спусковой крючок целого каскада трансформаций в экономике, организационной культуре и даже технологической архитектуре компаний. Неожиданно выяснилось: когда компании начинают полагаться на внешних "переводчиков" для интеграции AI, они одновременно отказываются от развития собственной экспертизы. Это создает долгосрочную зависимость. Консультанты становятся единственными, кто понимает, почему выбрана именно эта платформа, эта архитектура, эти интеграции. Результат? *Vendor lock-in*, но не в смысле контракта, а в смысле человеческого капитала. Параллельно запустилась вторая волна анализа: что будет, если данные для обучения AI тоже станут товаром, который нужно лицензировать? Здесь картина еще мрачнее. Транзакционные издержки настолько высокие, что выживут только агрегаторы — новые Getty Images, но для данных. Reddit, Stack Overflow, крупные издательства превратятся в брокеров информации. Малые стартапы просто не смогут позволить себе лицензировать столько контента. Но есть красивый контр-ход: когда лицензирование становится дорогим, AI-компании начнут инвестировать в синтетические данные и self-play методы — когда нейросеть обучает саму себя. Это снизит зависимость от человеческого контента, но создаст новый риск: AI, обученная преимущественно на машинном контенте, может полностью отойти от человеческих ценностей. На уровне геополитики картина становится совсем киберпанковской: государства начнут огораживать свои данные как стратегический ресурс. Китайские модели будут обучаться только на китайском контенте, европейские — на европейском. Глобальный AI разбивается на региональные версии, что усложнит международное сотрудничество и рост технологии в целом. Самое интересное: в этом хаосе появляется новая профессия — датные брокеры, эксперты по оценке стоимости контента для AI-обучения. Это может стать шансом для независимых создателей монетизировать свою работу без посредников... хотя бы временно. Проект показал, что технология — это не просто инструмент. Это сеть причинно-следственных связей, где каждое решение порождает десяток неожиданных последствий. И если не видеть этот граф целиком, мы просто пилим сук, на котором сидим. 😄 PHP — единственная технология, где «это работает» считается документацией.

#claude#ai#javascript#git
Разработка: trend-analisis
7 февр. 2026 г.
Новая функцияtrend-analisis

Когда AI-рынок переписывается быстрее, чем мы учимся

# Когда AI-специалист вдруг понимает, что весь рынок может переписаться за месяц Вчера сидел над проектом **trend-analysis** и случайно наткнулся на любопытную мысль: а что будет, если я начну думать не первым, а *вторым* порядком? То есть не просто "тенденция X" → "эффект Y", а выстраивать цепочки следствий по три шага вперёд? Задача была простой на вид — в ветке `feat/scoring-v2-tavily-citations` мне нужно было проанализировать каскадные эффекты ускорения устаревания AI-специалистов. Казалось бы, стандартный анализ трендов. Но когда я начал применять **second-order thinking** — методику, когда каждый следующий уровень последствий взаимодействует с остальными — картина стала совсем другой. Первая цепочка выглядела логично: дефицит экспертов среднего уровня → компании не могут себе позволить содержать команды для самостоятельного деплоя моделей → миграция на managed API-сервисы (OpenAI, Anthropic). До сюда всё известно. Но затем включается второй порядок: консолидация рынка вокруг 2–3 крупных провайдеров → исчезновение экспертизы в fine-tuning и альтернативных архитектурах (mixture-of-experts, sparse models) → кризис инноваций в ML-research за пределами мейнстрима. И вот уже у нас есть технологическая стагнация. Параллельно с этим развивается образовательный кризис. ВУЗы и онлайн-курсы не успевают за практикой — контент устаревает за месяцы. Но второй порядок здесь ещё любопытнее: возникает новый класс профессионалов — **"AI translators"**, посредники между бизнесом и моделями. Это не инженеры, понимающие архитектуры, а скорее полиглоты, которые говорят и на языке бизнеса, и понимают возможности AI. Они начинают зарабатывать больше, чем традиционные tech leads. Самое интересное — это видение цены. Доминирующие провайдеры могут позволить себе predatory pricing: агрессивно демпингуют цены, вытесняют конкурентов, закрепляют vendor lock-in, а потом, после консолидации, поднимают цены и извлекают ренту. Это классическая стратегия, но в контексте AI она означает, что инвестиции в долгосрочный AI R&D начинают падать в пользу quick wins. Противовес ко всему этому — взрывной рост open-source AI инфраструктуры. Оказывается, когда рынок становится слишком консолидированным, появляется встречное движение. Это как физика маятника. Пока писал аналитику, понял: мы в точке бифуркации. Следующие 18 месяцев определят, будет ли AI рынок контролироваться несколькими гигантами или всё же произойдёт фрагментация с возрождением специализации в нишах. 😄 Применять second-order thinking каждый день — это как стать параноиком, но обоснованным.

#claude#ai#python#javascript#git#api
Разработка: trend-analisis
7 февр. 2026 г.
Новая функцияtrend-analisis

AI дешевеет, junior-разработчики страдают: сложный анализ

# Когда AI дешевеет, страдают junior-разработчики: глубокий анализ каскадных эффектов Три недели назад я включился в проект **trend-analysis** с амбициозной целью: построить систему, которая видит не первый порядок причинно-следственных связей, а второй и третий. Задача была простая на словах: проанализировать, как снижение стоимости доступа к AI-инструментам переформатирует рынок труда для разработчиков. Но копать пришлось глубже, чем я ожидал. Стартовал я с ветки `feat/scoring-v2-tavily-citations` — решил, что буду собирать данные через Tavily API и отслеживать цитирования источников. Первый порядок эффектов был очевиден: дешевый ChatGPT → малые компании сами пишут скрипты вместо аутсорса → спрос на разработчиков падает. Но это была поверхность. **Первым делом** я распутал цепочку глубже. Оказалось, что механизм намного жестче: доступные AI-инструменты позволяют стартапам валидировать идеи без early-stage инвесторов. Они используют claude-api и GPT для быстрого прототипирования, обходя акселераторы и angel-networks. Это, в свою очередь, обрушивает ценность именно тех фондов, которые раньше ловили deal flow на ранних стадиях. Результат? Мелкие VC-фонды закрываются, и инвестиции концентрируются у крупных игроков. А это ударяет по всей экосистеме. **Неожиданно выяснилось**, что эффекты расходятся веером. Когда junior-разработчиков становится дешевле, падают ставки — и тогда образовательные программы теряют смысл. Буткемпы закрываются, EdTech-стартапы сворачиваются. Но параллельно происходит другое: люди мигрируют из Bay Area в более дешевые регионы (Austin, Lisbon, Miami) благодаря распределённым командам и AI-инструментам для коллаборации. Сейчас не нужно ехать в Пало-Альто, чтобы быть в эпицентре инноваций. Самый интересный момент — это то, что произойдёт с контентом и информацией. Если падает доверие к онлайн-источникам из-за AI-мусора, издатели теряют доход от рекламы. CPM падает. Контент-проекты закрываются. Качественная информация становится платной, а бесплатный интернет заполняется мусором. Получается странный парадокс: технология, обещавшая демократизировать знания, ведёт к информационному неравенству. **Вот что я понял за эти недели**: каскадные эффекты работают как землетрясение. Толчок в одной зоне (цена AI) вызывает сдвиги везде — от географии инноваций до структуры венчурного рынка, от образования до качества контента. И главное — нельзя смотреть на первый эффект. Нужно видеть сеть. Добавил в CLAUDE.md новое правило про ветки и MR: каждая фича — своя ветка, rebase перед коммитом, MR после push. Дисциплина. Теперь планирую расширить анализ на hard tech и геополитику — там механизмы ещё тоньше. 😄 **Совет дня: перед тем как запушить анализ больших трендов, сначала напиши сценарии на трёх уровнях причинности — иначе упустишь самое интересное.**

#claude#ai#python#javascript#git#api#security
Разработка: trend-analisis
7 февр. 2026 г.
Новая функцияtrend-analisis

Как отличить тренд от мусора: архитектура умного скоринга

# Когда скоринг тренда встречается с фактами: как мы научили компьютер различать шум и сигнал Всё началось с простого вопроса в проекте **trend-analisis**: как отличить действительно важный тренд от того, что просто много раз переписали в интернете? Первый скоринг работал, но был примитивен — считал кол-во источников и всё. А если один агрегатор новостей переиндексировал статью сто раз? Тогда по его логике это уже суперважный тренд, хотя на деле — просто мусор. Поэтому решили пойти в наступление. Нужна была система со вкусом, которая бы понимала разницу между настоящей значимостью тренда и просто шумом в информационном поле. Так родилась идея **Scoring V2**. Архитектура получилась трёхслойной. Первый слой — это **urgency** (срочность) и **quality** (качество), оба по шкале 0–100. Urgency отражает, насколько свежее и горячее событие, а quality говорит о том, из скольких разных *реальных источников* (не агрегаторов!) пришла информация. На основе этой пары метрик система выдаёт одну из четырёх рекомендаций: **ACT_NOW** (кидай в новости прямо сейчас), **MONITOR** (держим под контролем), **EVERGREEN** (медленный, долгоиграющий тренд) и **IGNORE** (это просто шум). Второй слой — интеграция с **Tavily API**. Это платформа для работы с новостями, которая даёт не просто список источников, а полный граф цитирований. TavilyAdapter в нашем коде считает unique domain count — то есть сколько *разных доменов* процитировали друг друга. Если один агрегатор (New Feed, Hacker News агрегатор — словили паттерны в `AGGREGATOR_PATTERNS`) выплюнул эту новость, мы его фильтруем. Остаются только оригинальные источники. Реальная магия произошла в методе `fetch_news()` с порогом цитирования. Мы выставили границу: если тренд цитируется меньше чем из пяти уникальных доменов, он недостаточно «реален», чтобы его считать. Просто фантом информационного поля. На фронте всё стало нагляднее. Добавили **RecommendationBadge** с крупным значком рекомендации и **UrgencyQualityIcons** — двойной индикатор, как в мобильных приложениях. Но главное изменение — источники больше не просто цифры (`5 sources`), теперь это кликабельные ссылки на URL. Пользователь может сразу прыгнуть на оригинальный источник вместо того, чтобы видеть размытую статистику. На бекенде настроился enrichment loop в **Crawler**: при обработке трендов с Hacker News, GitHub и arXiv теперь подтягиваются `tavily_citations` — полный профиль цитирований. Все константы вынесли в **Config**: `TAVILY_CITATION_BASELINES` (пороги для разных источников) и `AGGREGATOR_PATTERNS` (чёрный список перепечатанок). Самое интересное из истории Tavily: эта платформа появилась как ответ на хаос с информационной надёжностью. Её создатели заметили, что в эпоху AI-генерируемого контента источники становятся таким же валютой, как золото в разведке. Поэтому они решили сделать источники прозрачными и проверяемыми прямо из API. На выходе получилась система, которая *по-настоящему* различает сигнал и шум. **CHANGELOG.md** с чёткой историей всех изменений, **SCORING_V2_PLAN.md** с логикой расчётов (на будущее, чтобы кто-то не сломал), и **TAVILY_CITATION_APPROACH.md** с подводными камнями (коих оказалось немало). Всё задокументировано, чтобы следующий разработчик не потратил неделю на обратный инжиниринг. Что дальше? Теперь можно экспериментировать с весами urgency и quality, обучать модель на реальных данных пользователей. А Scoring V2 — это просто фундамент. Крепкий, надёжный, проверенный фундамент. 😄 Комментарий в коде: «Это должно работать» — убеждение из четырёх слов, которое разработчик дал самому себе вчера в 23:00, и он не особо в это верил.

#git#commit#security
Разработка: trend-analisis
7 февр. 2026 г.
Новая функцияtrend-analisis

Как научить машину отличать тренд от вирусного баяна

# Как мы разобрались, что такое тренд: от анализа данных к системе оценки Проект **trend-analisis** встал перед банальной, но хитрой проблемой: как машина может понять, что именно тренд? Не просто популярно, а действительно взлетает? В тренде идёт конкретное изменение? Вот я и взялся за исследование, которое потом превратилось в полноценную методологию оценки. Задача была амбициозная: построить систему двойной оценки для **Scoring V2**, которая бы учитывала и срочность события, и его качество. Потому что в реальной жизни одного лайка или шеера недостаточно — нужно смотреть на скорость роста, вовлечённость аудитории, стабильность интереса. Как отличить вирусный баян от настоящего тренда? Вот это вопрос. Первым делом я начал с сырых данных из **trending_items** — просто выгрузил всё, что там лежало, и начал искать закономерности. Представь: тысячи событий, метрики, сигналы. Нужно было понять, какие из них реально говорят о качестве тренда, а какие — это просто шум. Потом пошёл в глубокий анализ. Я собрал экспертные оценки, посмотрел, как эксперты оценивают эти же события. Интересное выяснилось: не все сигналы, которые кажутся важными, на самом деле коррелируют с реальной ценностью тренда. Например, большое число упоминаний может быть, а качество обсуждения — нулевое. Поэтому родилась идея **dual-score методологии**: отдельно считаем срочность (velocity), отдельно — качество (engagement и credibility). Третьим шагом я валидировал алгоритмы на граничных случаях. Что если тренд появился в маленьком сообществе, но растёт экспоненциально? Что если большой аккаунт один раз поделился — это считать за тренд? Документировал все edge cases, чтобы позже разработчики не натыкались на сюрпризы. Но вот беда: при анализе данных я понял, что некоторые критические сигналы вообще не собираются. Например, скорость, с которой люди делятся контентом в разных каналах, или как быстро растёт количество новых участников в обсуждении. Вот я и составил план по сбору этих данных — velocity и engagement метрики, которые нужно будет добавить в pipeline. На выходе получилась серия документов: от сырого анализа к финальной методологии, с проверкой алгоритмов и планом развития. Это не просто коммит — это полный цикл исследования, задокументированный так, чтобы любой разработчик мог взять и реализовать на основе выводов. Главный урок: прежде чем писать код системы, сначала нужно понять её логику. Потратить время на исследование — это не потеря времени, это инвестиция в правильную архитектуру. Потом код пишется в 10 раз быстрее. 😄 Почему scikit-learn считает себя лучше всех? Потому что Stack Overflow так сказал.

#git#commit#security
Разработка: trend-analisis
7 февр. 2026 г.
Новая функцияC--projects-bot-social-publisher

SQLite на Linux: когда переменные окружения не спасают

# Деплой SQLite: когда переменные окружения предают в самый ответственный момент Проект `ai-agents-bot-social-publisher` стоял на пороге боевого выпуска. Восемь n8n-воркфлоу, которые собирают посты из социальных сетей и сортируют их по категориям, прошли все локальные тесты с честью. Команда была уверена — завтра деплоим на Linux-сервер, и всё заживёт. Реальность оказалась жестче. Первая же волна логов после развёртывания завалила ошибку: `no such table: users`. Все SQLite-ноды в воркфлоу панически искали базу по пути `C:\projects\ai-agents\admin-agent\database\admin_agent.db`. Классический Windows-путь. На Linux-сервере, разумеется, такого ничего не было. ## Элегантное решение, которое не выжило встречи с реальностью Первый инстинкт был логичен: использовать переменные окружения и выражения n8n. Добавили `DATABASE_PATH=/data/admin_agent.db` в `docker-compose.yml`, развернули воркфлоу с выражением `$env.DATABASE_PATH` в конфиге SQLite-ноды и нажали кнопку деплоя. Ничего не изменилось — всё падало с той же ошибкой. Потом выяснилось неприятное: в n8n v2.4.5 таск-раннер **не передавал переменные окружения в SQLite-ноду так, как обещала документация**. Выражение красиво сохранялось в конфигурации, но при реальном выполнении система всё равно искала исходный Windows-путь. Красивое решение встретилось с суровой реальностью и проиграло. ## Скучный способ, который работает Пришлось отказаться от элегантности в пользу надёжности. Решение оказалось неожиданно простым: **string replacement при деплое**. Написал скрипт `deploy/deploy-n8n.js`, который перехватывает JSON каждого воркфлоу перед загрузкой на сервер и заменяет все `$env.DATABASE_PATH` на реальный путь `/var/lib/n8n/data/admin_agent.db`. Скучно? Абсолютно. Но работает. Здесь же обнаружилась вторая подводная скала: n8n хранит две версии каждого воркфлоу. *Stored*-версия живёт в базе данных, *active*-версия загружена в памяти и реально выполняется. Когда обновляешь воркфлоу через API, обновляется только хранилище. Active может остаться со старыми параметрами. Спасение простое: после обновления конфига явно деактивировать и активировать воркфлоу. К этому добавили инициализацию SQLite. Скрипт копирует на сервер SQL-миграции (`schema.sql`, `seed_questions.sql`) и выполняет их через n8n API перед активацией воркфлоу. Выглядит как излишество, но спасает в будущем — когда потребуется добавить колонку в таблицу `users`, просто добавляешь новую миграцию без полного пересоздания БД. ## Итог Теперь весь деплой — одна команда: `node deploy/deploy-n8n.js --env .env.deploy`. Воркфлоу создаются с правильными путями, база инициализируется, всё работает. **Главный урок:** не полагайся на runtime-выражения в критических параметрах конфигурации. Лучше заранее знать точное место и подставить путь при развёртывании. Скучно, но надёжно. — Ну что, SQLite, теперь ты найдёшь свою базу? — спросил я у логов. SQLite ответил тишиной успеха. 😄

#claude#ai#javascript#git#api
Разработка: bot-social-publisher
7 февр. 2026 г.
Новая функцияborisovai-admin

Туннели за день: как я параллелизировал frp-интеграцию

# Параллелизм в действии: как я за один день собрал туннельное решение для borisovai-admin Когда ты работаешь над проектом **borisovai-admin**, появляются моменты, когда нужно сделать сразу много однотипной работы. У меня была ровно такая задача: реализовать систему **frp tunneling** — нужно было создать четыре новых файла, переделать четыре существующих и не запутаться в деталях. Обычно такие дни начинаются с вопроса: «С чего начать?» Я выбрал ответ: со всем одновременно. ## Задача: соединить машины, не ломая архитектуру Проблема была в том, что нам нужна была система туннелирования для соединения удалённых серверов через контрольный канал. **frp** (fast reverse proxy) — отличный инструмент для этого, но его нужно было интегрировать в существующую инфраструктуру. При этом всё должно было работать параллельно с **Traefik** и не конфликтовать с уже развёрнутой системой. Первым делом я понял: это не может быть один огромный рефакторинг. Нужен был план, разбитый на логические части. ## Что я создал: четыре ключевых компонента **install-frps.sh** стал сердцем всей системы — 210-строчный скрипт установки, который берёт на себя всю грязную работу: скачивает бинарник, генерирует конфиг, создаёт systemd unit, настраивает DNS и firewall. Это не просто скрипт — это полноценный конвейер, который должен работать на production-сервере без человеческого вмешательства. Параллельно я подготовил **шаблон frpc.toml** для Windows-клиентов, чтобы разработчик мог просто заполнить пару полей и запустить. И конечно, **systemd unit** и **Traefik конфиг** для основного сервера — чтобы всё было pre-built и готово к развёртыванию. ## Неожиданный момент: три порта вместо одного Когда я раскладывал архитектуру по полочкам, выяснилось, что **frp** использует три разных порта: 17420 (control channel), 17480 (HTTP vhost за Traefik), 17490 (dashboard только для localhost). Первый импульс был открыть всё в firewall, но стоп — нужна была безопасность. В итоге получилось изящное решение: контрольный канал открыт, vhost спрятан за Traefik с wildcard HostRegexp, dashboard доступен только локально. ## Интересный факт про reverse proxy Знаете, что смешного в reverse proxy? Обычный proxy скрывает клиента (вы видите proxy, а не пользователя). Reverse proxy делает противоположное — скрывает сервер (клиент видит публичный адрес, а не реальную машину). **frp** — это именно reverse proxy в его самом полезном проявлении для распределённых систем. ## Что дальше В итоге я обновил четыре существующих файла, добавил скрипт установки в upload-процесс, расширил конфиг примеров четырьмя новыми полями. Теперь разработчик может развернуть frps-сервер одной командой и подключить Windows-клиент без боли. Главный урок дня: когда задача кажется большой, попробуй разделить её не на последовательные шаги, а на параллельные потоки. Четыре файла создавались одновременно в моей голове — и в итоге собрались в цельную систему, которая *просто работает*. 😄 Что общего у Bun и подростка? Оба непредсказуемы и требуют постоянного внимания.

#claude#ai#javascript#api
Разработка: borisovai-admin
7 февр. 2026 г.
Новая функцияtrend-analisis

Суперкластеры AI переписывают энергетику и геополитику

# Когда AI-кластеры переписывают энергетическую карту мира На проекте **trend-analysis** мне дали интересную задачу: разобраться с каскадными эффектами, которые создают AI-суперкластеры. Не просто "AI быстрее растёт", а настоящая цепочка последствий: как инвестиции мегатехкомпаний в энергетику меняют геополитику, недвижимость, научные исследования и даже рынок труда. Первым делом я начал картографировать эту сеть причинно-следственных связей. Оказалось, что когда OpenAI, Meta и Google строят собственные энергостанции для своих суперкластеров, это не просто техническая покупка. Это *перевод власти* от государственных энергокомпаний к корпорациям. Раньше энергетическая инфраструктура была монопольной государственной игрой — теперь она становится товаром конкуренции между мегакорпорациями. Но самая острая проблема оказалась в **водных ресурсах**. Современный дата-центр требует 400+ тысяч галлонов воды в день для охлаждения. В засушливых регионах (американский Юго-Запад, части Европы) это создаёт прямой конфликт с сельским хозяйством и питьевым водоснабжением. Tech-компании вынуждены срочно разрабатывать *waterless cooling* — погружную охладительную систему, чип-на-чип теплоотвод. Но это требует 3–5 лет разработки, а давление растёт прямо сейчас. Параллельно я отследил другой эффект: **стабилизацию цен на AI-сервисы**. Когда основные игроки держат цены на уровне $0.01–0.10 за 1000 токенов и не спешат их снижать, это создаёт идеальные условия для *параллельной экосистемы open-source*. Компании среднего размера начинают массово переходить на Llama и Mistral, разворачивая локальные модели. Это не конкуренция за цены — это уход от игроков вообще. Неожиданный вывод: **AI-неравенство растёт географически**. Студенты в развивающихся странах не могут себе позволить регулярный доступ к SOTA-моделям через API. Это замедляет их карьеру, концентрирует таланты в богатых регионах и парадоксально — замораживает скорость инноваций. Breakthrough часто приходит от неожиданных источников, но если источник не может позволить себе экспериментировать, инновация замирает. Я заметил и третий паттерн: **enterprise middleware взлетает**. Когда цены на API высокие и стабильные, между моделью и пользователем рождается целый слой посредников (LangChain, LlamaIndex, специализированные гейтвеи). Каждый из них ловит немного стоимости. Это усложняет экосистему, но укрепляет позиции действующих игроков. Самый интересный каскадный эффект — **малые модульные реакторы (SMR)**. Tech-гиганты, вкладывающие в ядерную энергию, аккумулируют столько инвестиций, что SMR перестают быть мечтой — они становятся коммерчески жизнеспособными. Это может решить энергетический кризис для 800+ миллионов людей без надёжного электричества. Вывод: разработчик работает в эпоху, когда его выбор технологии имеет отклик в энергетике, демографии, научных исследованиях. Это не просто features и bugs — это реальная переустройка мира. Что общего у Netlify и кота? Оба делают только то, что хотят, и игнорируют инструкции 😄

#claude#ai#javascript#api
Разработка: trend-analisis
7 февр. 2026 г.
Новая функцияC--projects-bot-social-publisher

SQLite на кроссплатформе: когда переменные окружения предают

# SQLite между Windows и Linux: как не потерять данные при деплое Проект `ai-agents-bot-social-publisher` был почти готов к боевому выпуску. Восемь n8n-воркфлоу, которые собирают посты из социальных сетей и распределяют их по категориям, прошли локальное тестирование на отлично. Но тут наступил момент истины — первый деплой на Linux-сервер. Логи завалили ошибкой: `no such table: users`. Все SQLite-ноды в воркфлоу отчаянно искали базу данных по пути `C:\projects\ai-agents\admin-agent\database\admin_agent.db`. Windows-путь. На Linux-сервере, разумеется, ничего такого не было. ## Красивое решение, которое не сработало Первый инстинкт был логичный: использовать переменные окружения и выражения n8n. Добавили `DATABASE_PATH=/data/admin_agent.db` в `docker-compose.yml`, развернули воркфлоу с выражением `$env.DATABASE_PATH` в конфиге SQLite-ноды, нажали на кнопку деплоя и... всё равно падало. Выяснилось, что в n8n v2.4.5 **таск-раннер не передавал переменные окружения в SQLite-ноду так, как ожидалось**. Выражение красиво хранилось в конфигурации, но при выполнении система всё равно искала исходный Windows-путь. Пришлось отказаться от элегантности в пользу надёжности. ## Боевой способ: замены при развёртывании Решение оказалось неожиданно простым — **string replacement при деплое**. Разработал скрипт `deploy/deploy-n8n.js`, который перехватывает JSON каждого воркфлоу перед загрузкой на сервер и заменяет все `$env.DATABASE_PATH` на реальный абсолютный путь `/var/lib/n8n/data/admin_agent.db`. Скучно? Да. Предсказуемо? Абсолютно. Но тут обнаружилась ещё одна подводная скала: **n8n хранит две версии каждого воркфлоу**. Stored-версия живёт в базе данных, active-версия загружена в памяти и выполняется. Когда обновляешь воркфлоу через API, обновляется только хранилище. Active может остаться со старыми параметрами. Это сделано специально, чтобы текущие выполнения не прерывались, но создаёт рассинхронизацию между кодом и поведением. Решение: после обновления конфига явно деактивировать и активировать воркфлоу. ## Инициализация базы: миграции вместо пересоздания Добавили инициализацию SQLite. Скрипт SSH копирует на сервер SQL-миграции (`schema.sql`, `seed_questions.sql`) и выполняет их через n8n API перед активацией воркфлоу. Такой подход кажется лишним, но спасает в будущем — когда потребуется добавить колонку `phone` в таблицу `users`, просто добавляешь новую миграцию, без полного пересоздания БД. Теперь весь деплой сводится к одной команде: `node deploy/deploy-n8n.js --env .env.deploy`. Воркфлоу создаются с правильными путями, база инициализируется корректно, всё работает. **Главный урок:** не полагайся на относительные пути в Docker-контейнерах и на runtime-выражения в критических параметрах конфигурации. Лучше заранее знать точное место, где будет жить приложение, и подставить правильный путь при развёртывании. «Ну что, SQLite, теперь-то ты найдёшь свою базу?» — спросил я у логов. SQLite ответил тишиной успеха. 😄

#claude#ai#python#javascript#git#api#security
Разработка: bot-social-publisher
7 февр. 2026 г.
Новая функцияtrend-analisis

Как мы научили алгоритм видеть тренды раньше конкурентов

# Как мы научили систему различать тренды: от сырых данных к методологии V2 Проект **trend-analysis** потихоньку превращался в монстра. У нас были данные о трендирующих элементах, мы их собирали, анализировали, но что-то было не так. Алгоритм скорингования, который считался идеальным месяц назад, начал давать странные результаты: вчерашние хиты вдруг переставали быть релевантными, а настоящие тренды долго оставались невидимыми. Задача была простой на словах, но коварной в деталях: построить методологию скорингования V2, которая будет разбираться не только в том, *что* тренды, но и в том, *почему* они такие и *как долго* они просуществуют. ## Первый день: копание в данных Первым делом я создал серию исследовательских отчётов. Начал с **01-raw-data.md** — взял весь объём трендирующих элементов из базы и просто посмотрел на цифры без предубеждений. Какие сигналы вообще есть? Какие данные полны, а какие похожи на швейцарский сыр? Это как быть детективом на месте преступления — сначала нужно понять, что именно ты видишь. Потом пригласил в процесс экспертов. **02-expert-analysis.md** — это был мозговой штурм в текстовом формате. Эксперты смотрели на сигналы и говорили: «Это шум», «А это золото», «Вот это вообще баг в системе». Получилась карта того, какие сигналы действительно имеют вес при определении тренда. ## Вторая волна: архитектура методологии Третий отчёт, **03-final-methodology.md**, был поворотным. Мы поняли, что один скор — это неправда. Тренд не может быть описан одним числом. Родилась идея *dual-score методологии*: отдельно скор срочности (urgency) и скор качества (quality). Срочность показывает, насколько быстро что-то растёт прямо сейчас. Качество показывает, насколько это вообще надёжный сигнал. Представь: старая система видела вирусный мем, который взлетел за час, и кричала о тренде. А потом через два часа мем забыли, и система выглядела глупо. Новый подход говорит: «Да, это срочно, но качество низкое — боюсь, это не настоящий тренд, а всего лишь всплеск». **04-algorithms-validation.md** — это была проверка на прочность. Мы взяли исторические данные и прогнали их через алгоритм валидации. Ловили edge cases: что если все сигналы нулевые? Что если они противоречивы? Что на границах данных? Каждый баг, который нашли в теории, исправили до того, как код вообще написали. ## Последняя фаза: осознание пробелов **05-data-collection-gap.md** был честным разговором с самими собой. Мы поняли, что нам не хватает информации. Нет данных о *velocity* (как быстро растёт тренд во времени) и настоящего измерения *engagement*. Мы просто не собирали эту информацию раньше. Вот здесь и пришёл **06-data-collection-plan.md** — план того, как мы будем собирать недостающие сигналы. Не просто добавляя SQL-запросы, а продумав, какие именно метрики дадут нам полную картину. ## Что дальше? Весь этот мозговой марафон — это фундамент для реальной реализации. Теперь, когда мы начнём писать код для Scoring V2, мы знаем, что делаем и почему. Нет наугад, нет сомнений. Только чёткая методология и валидированные алгоритмы. Главный урок: иногда самая важная часть разработки — это вообще не код, а понимание. Потратили неделю на исследование вместо месяца отладки кривого скорингования. Карма благодарна. 😄 Почему scikit-learn считает себя лучше всех? Потому что Stack Overflow так сказал.

#git#commit#security
Разработка: trend-analisis
7 февр. 2026 г.
Новая функцияC--projects-bot-social-publisher

SQLite между Windows и Linux: как не потерять данные при деплое

# Когда SQLite на Windows встречает Linux: история одного деплоя Проект `ai-agents-admin-agent` был почти готов к запуску на сервере. Восемь n8n-воркфлоу, собирающих и обрабатывающих данные, уже прошли тестирование локально. На машине разработчика всё работало идеально. Но только до того момента, когда мы выложили их на Linux-сервер. Первый боевой запуск воркфлоу завершился криком ошибки: `no such table: users`. Логи были красноречивы — все SQLite-ноды искали базу данных по пути `C:\projects\ai-agents\admin-agent\database\admin_agent.db`. Локальный Windows-путь. На сервере такого вообще не существовало. ## Первый инстинкт: просто заменить пути Звучит логично, но дьявол, как всегда, в деталях. Я начал рассматривать варианты. **Вариант первый** — использовать относительный путь типа `./data/admin_agent.db`. Звучит мобильно и красиво, но это ловушка для новичков. Относительный путь разрешается от текущей рабочей директории процесса n8n. А откуда запущен n8n? Из Docker-контейнера? Из systemd? Из скрипта? Результат абсолютно непредсказуем. **Вариант второй** — абсолютный путь для каждого окружения. Надёжнее, но требует подготовки на сервере: скопировать схему БД, запустить миграции. Более сложно, зато предсказуемо. Я выбрал комбинированный подход. ## Как мы это реализовали Локально в `docker-compose.yml` добавил переменную окружения `DATABASE_PATH=/data/admin_agent.db` — чтобы разработка была удобной и воспроизводимой. Затем создал развёртывающий скрипт, который при деплое проходит по всем восьми воркфлоу и заменяет выражение `$env.DATABASE_PATH` на реальный абсолютный путь `/var/lib/n8n/data/admin_agent.db`. Но первое время я попытался обойтись выражениями n8n. Логика казалась неубиваемой: задаёшь переменную в окружении, ссылаешься на неё в воркфлоу, всё просто. На практике выяснилось, что в n8n v2.4.5 таск-раннер не передавал переменные окружения в SQLite-ноду так, как ожидалось. Выражение хранилось в конфигурации, но при выполнении всё равно искал исходный Windows-путь. Пришлось идти в лоб — **строковые замены при деплое**. Развёртывающий скрипт `deploy/deploy-n8n.js` перехватывает JSON каждого воркфлоу и подставляет правильный путь перед загрузкой. Ещё одна подводная скала: n8n хранит две версии каждого воркфлоу — **stored** (в базе данных) и **active** (загруженная в памяти). Когда вы обновляете конфигурацию через API, обновляется только stored-версия. Active может остаться со старыми параметрами. Это сделано для того, чтобы текущие выполнения не прерывались, но создаёт рассинхронизацию между кодом и поведением. Решение: явная деактивация и активация воркфлоу после обновления. Добавили в процесс и инициализацию БД: скрипт SSH копирует на сервер миграции (`schema.sql`, `seed_questions.sql`) и выполняет их через n8n API перед активацией воркфлоу. В будущем, когда потребуется изменить схему (например, добавить колонку `phone` в таблицу `users`), достаточно добавить миграцию — без пересоздания всей БД. ## Итог Теперь деплой сводится к одной команде: `node deploy/deploy-n8n.js --env .env.deploy`. Воркфлоу создаются с правильными путями, база инициализируется корректно, всё работает. Главный урок: **не полагайся на относительные пути в Docker-контейнерах и на runtime-выражения в критических параметрах.** Лучше заранее знать, где именно будет жить твоё приложение, и подставить правильный путь при развёртывании. Это скучно, но предсказуемо. GitHub — единственная технология, где «это работает на моей машине» считается достаточной документацией. 😄

#claude#ai#python#javascript#git#api#security
Разработка: bot-social-publisher
7 февр. 2026 г.
Новая функцияtrend-analisis

Когда один тренд ИИ запускает цепную реакцию в экономике

# Когда тренды становятся сложнее, чем сама архитектура: анализ каскадов ИИ-инфраструктуры Проект `trend-analisis` родился из простого вопроса: как отследить не просто новости об искусственном интеллекте, а понять, какие эффекты один тренд вызывает в других областях? Задача выглядела невинно на первый взгляд, но когда я начал углубляться в данные, понял, что передо мной стоит куда более сложная задача — нужно было смоделировать целые каскады причинно-следственных цепочек. Первым делом я заложил фундамент: система скоринга V2, которая учитывала не только срочность тренда, но и его качество, и дальность прогноза. Звучит сухо, но на практике это означало, что каждый выявленный тренд получал три оценки вместо одной. Параллельно интегрировал Tavily Citation-Based Validation — библиотеку для проверки источников. Без неё данные были бы просто красивой фантазией. Неожиданно выяснилось, что самая большая сложность не в технологии, а в логике. Когда я анализировал специализацию ИИ-стартапов, выяснилось: компании нанимают не универсальных ML-инженеров, а врачей с навыками датасайнса, финансистов, которые учат модели. Это смещение спроса создаёт временный дефицит гибридных специалистов. Зарплаты взлетают в нишах, падают в массовом сегменте. И всё это — цепная реакция от одного казалось бы локального тренда. Архитектурно это означало, что нельзя просто сохранить тренд в базу. Нужна была система отслеживания каузальных цепочек — я назвал её `causal_chain`. Каждый эффект связан с другим, образуя паутину взаимозависимостей. Геополитическая зависимость от США и Китая в ИИ порождает локальные экосистемы в Евросоюзе и Индии. Open-source становится геополитическим буфером. Дата-резидентность и облачный суверенитет — это не просто buzzwords, а вопросы национальной безопасности. **Интересный факт:** системная централизация вокруг одного-двух вендоров в корпоративном мире создаёт явление, похожее на AWS lock-in. Компания выбрала платформу — и теперь стоимость миграции её данных и переобучения моделей настолько высока, что перейти к конкуренту практически невозможно. Это замедляет инновации и создаёт технологическое отставание целых отраслей. Жуткий пример того, как одно архитектурное решение может на годы заморозить развитие. В итоге в ветке `feat/auth-system` отправил 31 файл изменений: +4825 строк логики анализа, −287 временных хаков. Исключил локальные файлы конфигурации и тестовые данные. Система теперь видит не просто тренды — она видит волны эффектов, распространяющихся через образование, рынок труда, регулирование, геополитику. Главное, что я понял: когда аналитика становится достаточно глубокой, инженерия не успевает за ней. Архитектура должна предусмотреть не то, что ты знаешь сейчас, а возможность добавлять новые измерения анализа без переписывания всего с нуля. Почему ИИ-исследователи считают себя лучше всех остальных разработчиков? 😄 Потому что они анализируют тренды лучше, чем самих себя.

#claude#ai#javascript#git#api#security
Разработка: trend-analisis
7 февр. 2026 г.
Новая функцияtrend-analisis

Scoring V2: система, которая отличает настоящие тренды от шума

# Scoring V2: когда трендам нужна оценка честности Проект **trend-analysis** разросся до того, что мы уже собирали тренды из трёх источников одновременно — Hacker News, GitHub и arXiv. Но вот беда: не все тренды одинаково полезны. Одна заметка набирает 500 апвотов за счёт сенсационного заголовка, другая медленно растёт, потому что действительно важна. Третья вообще сплошь переподсказывается из десяти агрегаторов. Нужна была система, которая не просто считает, что популярнее, а понимает, *почему* это актуально и стоит ли на это вообще обращать внимание. Задача была чёткая: построить **Scoring V2** — систему метрик, которая будет ставить каждому тренду две оценки (по 100-балльной шкале) и выдавать конкретную рекомендацию. Не просто «это популярно», а **ACT_NOW** («действуй сейчас!»), **MONITOR** («присматриваем»), **EVERGREEN** («это на века») или **IGNORE** («не трать время»). Первым делом разобрались с метриками. **Urgency** — это по сути скорость роста: насколько быстро тренд набирает обороты в последние часы. **Quality** — это честность источника и уникальность. Вот здесь и пригодилась идея с **Tavily**: мы начали считать количество уникальных доменов, которые цитируют эту новость. Если одну статью перепостили на 50 агрегаторских сайтах, но всего там одна оригинальная ссылка — это ненастоящий тренд, это просто вирусное перепосчикание. Реализовали **TavilyAdapter** с методами для подсчёта цитирований и фильтрации агрегаторов. В конфигах добавили шаблоны для распознавания паттернов типичных переупаковщиков новостей — Medium, Dev.to, Hashnode и прочих. **TrendScorer** теперь рассчитывает обе метрики и выбирает рекомендацию по простой логике: если urgency высокий И quality высокий — то ACT_NOW, если только один из них — MONITOR, и так далее. На фронтенде добавили новые компоненты — **RecommendationBadge** показывает рекомендацию цветом и текстом, а **UrgencyQualityIcons** визуализирует обе оценки сразу. Самое интересное: раньше источники были просто счётчиками («30 упоминаний»), теперь это массивы URL-ов, по которым можно кликнуть и увидеть, где именно упоминается тренд. Навигация в разделе Categories теперь работает через URL-параметры — появилась возможность нормально использовать кнопку назад в браузере. **Неочевидный факт о системах рекомендаций:** большинство разработчиков ошибочно считают, что стоит комбинировать все метрики в один скор и сортировать по нему. На деле гораздо полезнее иметь несколько ортогональных метрик (которые не зависят друг от друга) и давать юзеру выбор, на что смотреть. Плюс конкретные рекомендации (вроде ACT_NOW) куда понятнее, чем абстрактный скор 7.3 из 10. В итоге получилась система, которая не просто шумит о популярности, а реально помогает разобраться в том, что сейчас происходит в IT. Весь код, логика и даже типичные ловушки документировали в **CHANGELOG.md** и отдельных markdown-ах про Scoring V2 и подход с Tavily. Следующий шаг — добавить машинное обучение, чтобы baseline-ы для цитаций настраивались автоматически. 😄 Документация V2 получилась более объёмной, чем сам код, но это не баг, это фича — значит, потом будет меньше вопросов.

#git#commit#security
Разработка: trend-analisis
7 февр. 2026 г.
Новая функцияC--projects-bot-social-publisher

Сессии вместо JWT: как мы защитили trend-analysis без сложности

# Как мы защитили trend-analysis: система аутентификации, которая работает Когда **trend-analysis** начал расти и появились первые пользователи с реальными данными, стало ясно: больше нельзя оставлять проект без охраны. Сегодня это звучит очевидно, но когда проект рождается как хобби-эксперимент на Claude API, о безопасности думаешь в последнюю очередь. Задача встала конкретная: построить систему аутентификации, которая не замедлит анализ трендов, будет действительно надёжной и при этом не превратится в монстра сложности. Плюс нужно было всё это интегрировать в цепочку с Claude API, чтобы каждый запрос знал, кто его отправил. **Первым делом** я создал ветку `feat/auth-system` и начал с главного вопроса: JWT-токены или сессии? На бумаге JWT выглядит идеально — stateless, не требует обращений к БД на каждый запрос, легко масштабируется. Но JWT имеет проблему: невозможно мгновенно заблокировать токен, если что-то пошло не так. Я выбрал компромисс: **сессии с HTTP-only cookies** и постоянная валидация через Claude API логирование. Это скучнее, чем блеск JWT, но безопаснее и практичнее. Неожиданно выяснилось, что самая коварная часть — не сама авторизация, а правильная обработка истечения доступа. Пользователь кликает кнопку, а его сессия уже протухла. Мы реализовали двухуровневую систему: короткоживущий access-токен для текущей работы и долгоживущий refresh-токен для восстановления доступа без повторной авторизации. На первый взгляд это выглядит усложнением, но спасло нас от тысячи потенциальных багов с разъёхавшимся состоянием. Интересный момент, о котором забывают: **timing-атаки**. Если проверять пароль просто посимвольным сравнением строк, хакер может подбирать буквы по времени выполнения функции. Я использовал `werkzeug.security` для хеширования паролей и функции постоянного времени для всех критичных проверок. Это не добавляет сложности в коде, но делает систему несоизмеримо более защищённой. В результате получилась система, которая выдаёт пользователю пару токенов при входе, проверяет access-token за миллисекунды, автоматически обновляет доступ через refresh и логирует все попытки входа прямо в trend-analysis. База построена правильно, и теперь наша платформа защищена. Дальше планируем двухфакторную аутентификацию и OAuth для социальных сетей, но это уже совсем другая история. 😄 Знаете, почему JWT-токены никогда не приходят на вечеринки? Потому что они всегда истекают в самый неподходящий момент!

#claude#ai#python#git#api#security
Разработка: bot-social-publisher
7 февр. 2026 г.
Обучениеtrend-analisis

JWT и refresh-токены: как защитить trend-analysis без перегрузки

# Аутентификация в trend-analysis: как мы построили систему с нуля Когда проект **trend-analysis** начинал расти, сразу встала проблема: как отличить легального пользователя от непрошеного гостя? На начальном этапе было всё просто — никакой безопасности, но вот появились первые реальные данные, первые попытки доступа, и мы поняли: пора обустраиваться. Задача стояла конкретная: построить систему аутентификации, которая была бы достаточно надёжной, не утяжеляла бы приложение, но и не пропускала бы злоумышленников. Плюс у нас была специфика: проект работал на **Claude API** для анализа трендов, значит, надо было интегрировать авторизацию прямо в эту цепочку. **Первым делом** мы создали ветку `feat/auth-system` и начали с простого вопроса: токены или сессии? После быстрого анализа выбрали **JWT-токены** — они прекрасно хранятся в памяти браузера, легко передаются в заголовках и не требуют постоянного обращения к базе на каждый запрос. Плюс в нашем случае это был безопасный выбор: асинхронная проверка на каждый запрос через Claude API логирует всё необходимое. Неожиданно выяснилось, что самая сложная часть — не сама авторизация, а правильная обработка истечения токена. Пользователь делает запрос, а его токен уже просрочился. Мы реализовали refresh-токены: короткоживущий access-token для работы и долгоживущий refresh для восстановления доступа без повторной авторизации. Выглядит скучно, но это спасло нас от тысячи багов потом. Интересный момент: при работе с системой аутентификации нужно помнить о **timing-атаках**. Если ваш код проверяет пароль «в лоб» с простым сравнением строк, хакер может подбирать буквы по времени выполнения. Мы использовали функции постоянного времени для всех критичных проверок — это не сложно, но невероятно важно. В итоге получилась система, которая: - Выдаёт пользователю пару токенов при входе - Проверяет access-token на каждый запрос за миллисекунды - Автоматически обновляет доступ через refresh-токен - Логирует все попытки входа в систему trend-analysis **Дальше** планируем добавить двухфакторную аутентификацию и интеграцию с OAuth для социальных сетей, но это уже совсем другая история. Главное — база построена, и теперь анализ трендов защищён как форпост. 😄 Знаете, почему JWT-токены никогда не приходят на вечеринки? Потому что они всегда истекают в самый неподходящий момент!

#claude#ai#git
Разработка: trend-analisis
7 февр. 2026 г.